Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deborah Morena is active.

Publication


Featured researches published by Deborah Morena.


Oncogene | 2014

Failure to downregulate the BAF53a subunit of the SWI/SNF chromatin remodeling complex contributes to the differentiation block in rhabdomyosarcoma.

Riccardo Taulli; Valentina Foglizzo; Deborah Morena; Davide Martino Coda; Ugo Ala; Francesca Bersani; Nicola Maestro; Carola Ponzetto

Rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in children and young adults, is characterized by a partially differentiated myogenic phenotype. We have previously shown that the blocking of tumor growth and resumption of differentiation can be achieved by re-expression of miR-206, a muscle-enriched microRNA missing in RMS. In this work, we focused on BAF53a, one of the genes downregulated in miR-206-expressing RMS cells, which codes for a subunit of the SWI/SNF chromatin remodeling complex. Here we show that the BAF53a transcript is significantly higher in primary RMS tumors than in normal muscle, and is a direct target of miR-206. Sustained expression of BAF53a interferes with differentiation in myogenic cells, whereas its silencing in RMS cells increases expression of myogenic markers and inhibits proliferation and anchorage-independent growth. Accordingly, BAF53a silencing also impairs embryonal RMS and alveolar RMS tumor growth, inducing their morphological and biochemical differentiation. These results indicate that failure to downregulate the BAF53a subunit may contribute to the pathogenesis of RMS, and suggest that BAF53a may represent a novel therapeutic target for this tumor.


eLife | 2016

Hepatocyte Growth Factor-mediated satellite cells niche perturbation promotes development of distinct sarcoma subtypes

Deborah Morena; Nicola Maestro; Francesca Bersani; Paolo E. Forni; Marcello Francesco Lingua; Valentina Foglizzo; Petar Šćepanović; Silvia Miretti; Alessandro Morotti; Jack F. Shern; Javed Khan; Ugo Ala; Paolo Provero; Valentina Sala; Tiziana Crepaldi; Patrizia Gasparini; Michela Casanova; Andrea Ferrari; Gabriella Sozzi; Roberto Chiarle; Carola Ponzetto; Riccardo Taulli

Embryonal Rhabdomyosarcoma (ERMS) and Undifferentiated Pleomorphic Sarcoma (UPS) are distinct sarcoma subtypes. Here we investigate the relevance of the satellite cell (SC) niche in sarcoma development by using Hepatocyte Growth Factor (HGF) to perturb the niche microenvironment. In a Pax7 wild type background, HGF stimulation mainly causes ERMS that originate from satellite cells following a process of multistep progression. Conversely, in a Pax7 null genotype ERMS incidence drops, while UPS becomes the most frequent subtype. Murine EfRMS display genetic heterogeneity similar to their human counterpart. Altogether, our data demonstrate that selective perturbation of the SC niche results in distinct sarcoma subtypes in a Pax7 lineage-dependent manner, and define a critical role for the Met axis in sarcoma initiation. Finally, our results provide a rationale for the use of combination therapy, tailored on specific amplifications and activated signaling pathways, to minimize resistance emerging from sarcomas heterogeneity. DOI: http://dx.doi.org/10.7554/eLife.12116.001


Cell Cycle | 2015

SMYD1 and G6PD modulation are critical events for miR-206-mediated differentiation of rhabdomyosarcoma

Davide Martino Coda; Marcello Francesco Lingua; Deborah Morena; Valentina Foglizzo; Francesca Bersani; Ugo Ala; Carola Ponzetto; Riccardo Taulli

Rhadomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood. RMS cells resemble fetal myoblasts but are unable to complete myogenic differentiation. In previous work we showed that miR-206, which is low in RMS, when induced in RMS cells promotes the resumption of differentiation by modulating more than 700 genes. To better define the pathways involved in the conversion of RMS cells into their differentiated counterpart, we focused on 2 miR-206 effectors emerged from the microarray analysis, SMYD1 and G6PD. SMYD1, one of the most highly upregulated genes, is a H3K4 histone methyltransferase. Here we show that SMYD1 silencing does not interfere with the proliferative block or with the loss anchorage independence imposed by miR-206, but severely impairs differentiation of ERMS, ARMS, and myogenic cells. Thus SMYD1 is essential for the activation of muscle genes. Conversely, among the downregulated genes, we found G6PD, the enzyme catalyzing the rate-limiting step of the pentose phosphate shunt. In this work, we confirmed that G6PD is a direct target of miR-206. Moreover, we showed that G6PD silencing in ERMS cells impairs proliferation and soft agar growth. However, G6PD overexpression does not interfere with the pro-differentiating effect of miR-206, suggesting that G6PD downmodulation contributes to - but is not an absolute requirement for - the tumor suppressive potential of miR-206. Targeting cancer metabolism may enhance differentiation. However, therapeutic inhibition of G6PD is encumbered by side effects. As an alternative, we used DCA in combination with miR-206 to increase the flux of pyruvate into the mitochondrion by reactivating PDH. DCA enhanced the inhibition of RMS cell growth induced by miR-206, and sustained it upon miR-206 de-induction. Altogether these results link miR-206 to epigenetic and metabolic reprogramming, and suggest that it may be worth combining differentiation-inducing with metabolism-directed approaches.


PLOS ONE | 2014

The Vitamin D Receptor Inhibits the Respiratory Chain, Contributing to the Metabolic Switch that Is Essential for Cancer Cell Proliferation

Marco Consiglio; Michele Destefanis; Deborah Morena; Valentina Foglizzo; Mattia Forneris; Gianpiero Pescarmona; Francesca Silvagno

We recently described the mitochondrial localization and import of the vitamin D receptor (VDR) in actively proliferating HaCaT cells for the first time, but its role in the organelle remains unknown. Many metabolic intermediates that support cell growth are provided by the mitochondria; consequently, the identification of proteins that regulate mitochondrial metabolic pathways is of great interest, and we sought to understand whether VDR may modulate these pathways. We genetically silenced VDR in HaCaT cells and studied the effects on cell growth, mitochondrial metabolism and biosynthetic pathways. VDR knockdown resulted in robust growth inhibition, with accumulation in the G0G1 phase of the cell cycle and decreased accumulation in the M phase. The effects of VDR silencing on proliferation were confirmed in several human cancer cell lines. Decreased VDR expression was consistently observed in two different models of cell differentiation. The impairment of silenced HaCaT cell growth was accompanied by sharp increases in the mitochondrial membrane potential, which sensitized the cells to oxidative stress. We found that transcription of the subunits II and IV of cytochrome c oxidase was significantly increased upon VDR silencing. Accordingly, treatment of HaCaT cells with vitamin D downregulated both subunits, suggesting that VDR may inhibit the respiratory chain and redirect TCA intermediates toward biosynthesis, thus contributing to the metabolic switch that is typical of cancer cells. In order to explore this hypothesis, we examined various acetyl-CoA-dependent biosynthetic pathways, such as the mevalonate pathway (measured as cholesterol biosynthesis and prenylation of small GTPases), and histone acetylation levels; all of these pathways were inhibited by VDR silencing. These data provide evidence of the role of VDR as a gatekeeper of mitochondrial respiratory chain activity and a facilitator of the diversion of acetyl-CoA from the energy-producing TCA cycle toward biosynthetic pathways that are essential for cellular proliferation.


Cancer Research | 2016

Deep Sequencing Reveals a Novel miR-22 Regulatory Network with Therapeutic Potential in Rhabdomyosarcoma.

Francesca Bersani; Marcello Francesco Lingua; Deborah Morena; Valentina Foglizzo; Silvia Miretti; Letizia Lanzetti; Giovanna Carrà; Alessandro Morotti; Ugo Ala; Paolo Provero; Roberto Chiarle; Samuel Singer; Marc Ladanyi; Thomas Tuschl; Carola Ponzetto; Riccardo Taulli

Current therapeutic options for the pediatric cancer rhabdomyosarcoma have not improved significantly, especially for metastatic rhabdomyosarcoma. In the current work, we performed a deep miRNA profiling of the three major human rhabdomyosarcoma subtypes, along with cell lines and normal muscle, to identify novel molecular circuits with therapeutic potential. The signature we determined could discriminate rhabdomyosarcoma from muscle, revealing a subset of muscle-enriched miRNA (myomiR), including miR-22, which was strongly underexpressed in tumors. miR-22 was physiologically induced during normal myogenic differentiation and was transcriptionally regulated by MyoD, confirming its identity as a myomiR. Once introduced into rhabdomyosarcoma cells, miR-22 decreased cell proliferation, anchorage-independent growth, invasiveness, and promoted apoptosis. Moreover, restoring miR-22 expression blocked tumor growth and prevented tumor dissemination in vivo Gene expression profiling analysis of miR-22-expressing cells suggested TACC1 and RAB5B as possible direct miR-22 targets. Accordingly, loss- and gain-of-function experiments defined the biological relevance of these genes in rhabdomyosarcoma pathogenesis. Finally, we demonstrated the ability of miR-22 to intercept and overcome the intrinsic resistance to MEK inhibition based on ERBB3 upregulation. Overall, our results identified a novel miR-22 regulatory network with critical therapeutic implications in rhabdomyosarcoma. Cancer Res; 76(20); 6095-106. ©2016 AACR.


Oncotarget | 2017

Therapeutic inhibition of USP7-PTEN network in chronic lymphocytic leukemia: a strategy to overcome TP53 mutated/deleted clones

Giovanna Carrà; Cristina Panuzzo; Davide Torti; Guido Parvis; Sabrina Crivellaro; Ubaldo Familiari; Marco Volante; Deborah Morena; Marcello Francesco Lingua; Mara Brancaccio; Angelo Guerrasio; Pier Paolo Pandolfi; Giuseppe Saglio; Riccardo Taulli; Alessandro Morotti

Chronic Lymphocytic Leukemia (CLL) is a lymphoproliferative disorder with either indolent or aggressive clinical course. Current treatment regiments have significantly improved the overall outcomes even if higher risk subgroups - those harboring TP53 mutations or deletions of the short arm of chromosome 17 (del17p) - remain highly challenging. In the present work, we identified USP7, a known de-ubiquitinase with multiple roles in cellular homeostasis, as a potential therapeutic target in CLL. We demonstrated that in primary CLL samples and in CLL cell lines USP7 is: i) over-expressed through a mechanism involving miR-338-3p and miR-181b deregulation; ii) functionally activated by Casein Kinase 2 (CK2), an upstream interactor known to be deregulated in CLL; iii) effectively targeted by the USP7 inhibitor P5091. Treatment of primary CLL samples and cell lines with P5091 induces cell growth arrest and apoptosis, through the restoration of PTEN nuclear pool, both in TP53-wild type and -null environment. Importantly, PTEN acts as the main tumor suppressive mediator along the USP7-PTEN axis in a p53 dispensable manner. In conclusion, we propose USP7 as a new druggable target in CLL.


OncoImmunology | 2018

Bromodomain inhibition exerts its therapeutic potential in malignant pleural mesothelioma by promoting immunogenic cell death and changing the tumor immune-environment

Chiara Riganti; Marcello Francesco Lingua; Iris Chiara Salaroglio; Chiara Falcomatà; Luisella Righi; Deborah Morena; Francesca Picca; Daniele Oddo; Joanna Kopecka; Monica Pradotto; Roberta Libener; Sara Orecchia; Paolo Bironzo; Valentina Comunanza; Federico Bussolino; Silvia Novello; Giorgio V. Scagliotti; Federica Di Nicolantonio; Riccardo Taulli

ABSTRACT Systemic treatment of malignant pleural mesothelioma (MPM) is moderately active for the intrinsic pharmacological resistance of MPM cell and its ability to induce an immune suppressive environment. Here we showed that the expression of bromodomain (BRD) proteins BRD2, BRD4 and BRD9 was significantly higher in human primary MPM cells compared to normal mesothelial cells (HMC). Nanomolar concentrations of bromodomain inhibitors (BBIs) JQ1 or OTX015 impaired patient-derived MPM cell proliferation and induced cell-cycle arrest without affecting apoptosis. Importantly, BBIs primed MPM cells for immunogenic cell death, by increasing extracellular release of ATP and HMGB1, and by promoting membrane exposure of calreticulin and ERp57. Accordingly, BBIs activated dendritic cell (DC)-mediated phagocytosis and expansion of CD8+ T-lymphocyte clones endorsed with antitumor cytotoxic activity. BBIs reduced the expression of the immune checkpoint ligand PD-L1 in MPM cells; while both CD8+ and CD4+ T-lymphocytes co-cultured with JQ1-treated MPM cells decreased PD-1 expression, suggesting a disruption of the immune-suppressive PD-L1/PD-1 axis. Additionally, BBIs reduced the expansion of myeloid-derived suppressor cells (MDSC) induced by MPM cells. Finally, a preclinical model of MPM confirmed that the anti-tumor efficacy of JQ1 was largely due to its ability to restore an immune-active environment, by increasing intra-tumor DC and CD8+ T-lymphocytes, and decreasing MDSC. Thereby, we propose that, among novel drugs, BBIs should be investigated for MPM treatment for their combined activity on both tumor cells and surrounding immune-environment.


Non-coding RNA Investigation | 2018

ciRS-7 acts as a master player in colorectal cancer

Deborah Morena; Riccardo Taulli

Colorectal cancer (CRC) represents a critical health burden worldwide (1,2). Although patients with localized CRC have a 5-year survival rate of about 90%, this ratio dramatically drops in patients with metastatic tumors (2). Standard and liquid biopsy are extremely effective for the identification of critical genetic lesions and to study clonal evolution in CRC (3,4). However, only a minor fraction of oncogenic mutations are clinically actionable, indicating that other novel therapeutic strategies are urgently needed.


Non-coding RNA Investigation | 2018

MicroRNA shuttling impacts on cholangiocarcinoma pathogenesis

Francesca Bersani; Deborah Morena; Riccardo Taulli

Cholangiocarcinoma (CCA) is a heterogeneous and very aggressive disease of the bile ducts. CCA is often diagnosed in advanced stages due to the absence of evident clinical manifestation. Since patients affected by CCA are constantly increasing and the conventional chemotherapeutic approaches are not improving long-term survival, novel and more effective strategies are urgently needed. Specific parasites, local inflammation and the exposure to toxic agents are frequently associated to the development of the malignancy in the biliary tree (1). However, their pathogenic role is still object of active investigation.


Clinical Lymphoma, Myeloma & Leukemia | 2016

Inhibition OF USP7 Induces Selective Cancer Cell Death in Chronic Lymphocytic Leukemia

Giovanna Carrà; Cristina Panuzzo; Davide Torti; Guido Parvis; Sabrina Crivellaro; Marco Volante; Deborah Morena; Marcello Francesco Lingua; Mara Brancaccio; Angelo Guerrasio; Pier Paolo Pandolfi; Giuseppe Saglio; Riccardo Taulli; Alessandro Morotti

Collaboration


Dive into the Deborah Morena's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge