Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deborah N. Farlow is active.

Publication


Featured researches published by Deborah N. Farlow.


The New England Journal of Medicine | 2014

Loss-of-Function Mutations in APOC3, Triglycerides, and Coronary Disease

Jacy R. Crosby; Gina M. Peloso; Paul L. Auer; David R. Crosslin; Nathan O. Stitziel; Leslie A. Lange; Yingchang Lu; Zheng-zheng Tang; He Zhang; George Hindy; Nicholas G. D. Masca; Kathleen Stirrups; Stavroula Kanoni; Ron Do; Goo Jun; Youna Hu; Hyun Min Kang; Chenyi Xue; Anuj Goel; Martin Farrall; Stefano Duga; Pier Angelica Merlini; Rosanna Asselta; Domenico Girelli; Nicola Martinelli; Wu Yin; Dermot F. Reilly; Elizabeth K. Speliotes; Caroline S. Fox; Kristian Hveem

BACKGROUND Plasma triglyceride levels are heritable and are correlated with the risk of coronary heart disease. Sequencing of the protein-coding regions of the human genome (the exome) has the potential to identify rare mutations that have a large effect on phenotype. METHODS We sequenced the protein-coding regions of 18,666 genes in each of 3734 participants of European or African ancestry in the Exome Sequencing Project. We conducted tests to determine whether rare mutations in coding sequence, individually or in aggregate within a gene, were associated with plasma triglyceride levels. For mutations associated with triglyceride levels, we subsequently evaluated their association with the risk of coronary heart disease in 110,970 persons. RESULTS An aggregate of rare mutations in the gene encoding apolipoprotein C3 (APOC3) was associated with lower plasma triglyceride levels. Among the four mutations that drove this result, three were loss-of-function mutations: a nonsense mutation (R19X) and two splice-site mutations (IVS2+1G→A and IVS3+1G→T). The fourth was a missense mutation (A43T). Approximately 1 in 150 persons in the study was a heterozygous carrier of at least one of these four mutations. Triglyceride levels in the carriers were 39% lower than levels in noncarriers (P<1×10(-20)), and circulating levels of APOC3 in carriers were 46% lower than levels in noncarriers (P=8×10(-10)). The risk of coronary heart disease among 498 carriers of any rare APOC3 mutation was 40% lower than the risk among 110,472 noncarriers (odds ratio, 0.60; 95% confidence interval, 0.47 to 0.75; P=4×10(-6)). CONCLUSIONS Rare mutations that disrupt APOC3 function were associated with lower levels of plasma triglycerides and APOC3. Carriers of these mutations were found to have a reduced risk of coronary heart disease. (Funded by the National Heart, Lung, and Blood Institute and others.).


PLOS ONE | 2008

Concept, design and implementation of a cardiovascular gene-centric 50 k SNP array for large-scale genomic association studies.

Brendan J. Keating; Sam E. Tischfield; Sarah S. Murray; Tushar Bhangale; Thomas S. Price; Joseph T. Glessner; Luana Galver; Jeffrey C. Barrett; Struan F. A. Grant; Deborah N. Farlow; Hareesh R. Chandrupatla; Mark Hansen; Saad Ajmal; George J. Papanicolaou; Yiran Guo; Mingyao Li; Paul I. W. de Bakker; Swneke D. Bailey; Alexandre Montpetit; Andrew C. Edmondson; Kent D. Taylor; Xiaowu Gai; Susanna S. Wang; Myriam Fornage; Tamim H. Shaikh; Leif Groop; Michael Boehnke; Alistair S. Hall; Andrew T. Hattersley; Edward C. Frackelton

A wealth of genetic associations for cardiovascular and metabolic phenotypes in humans has been accumulating over the last decade, in particular a large number of loci derived from recent genome wide association studies (GWAS). True complex disease-associated loci often exert modest effects, so their delineation currently requires integration of diverse phenotypic data from large studies to ensure robust meta-analyses. We have designed a gene-centric 50 K single nucleotide polymorphism (SNP) array to assess potentially relevant loci across a range of cardiovascular, metabolic and inflammatory syndromes. The array utilizes a “cosmopolitan” tagging approach to capture the genetic diversity across ∼2,000 loci in populations represented in the HapMap and SeattleSNPs projects. The array content is informed by GWAS of vascular and inflammatory disease, expression quantitative trait loci implicated in atherosclerosis, pathway based approaches and comprehensive literature searching. The custom flexibility of the array platform facilitated interrogation of loci at differing stringencies, according to a gene prioritization strategy that allows saturation of high priority loci with a greater density of markers than the existing GWAS tools, particularly in African HapMap samples. We also demonstrate that the IBC array can be used to complement GWAS, increasing coverage in high priority CVD-related loci across all major HapMap populations. DNA from over 200,000 extensively phenotyped individuals will be genotyped with this array with a significant portion of the generated data being released into the academic domain facilitating in silico replication attempts, analyses of rare variants and cross-cohort meta-analyses in diverse populations. These datasets will also facilitate more robust secondary analyses, such as explorations with alternative genetic models, epistasis and gene-environment interactions.


Nature | 2015

Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction

Ron Do; Nathan O. Stitziel; Hong-Hee Won; Anders Jørgensen; Stefano Duga; Pier Angelica Merlini; Adam Kiezun; Martin Farrall; Anuj Goel; Or Zuk; Illaria Guella; Rosanna Asselta; Leslie A. Lange; Gina M. Peloso; Paul L. Auer; Domenico Girelli; Nicola Martinelli; Deborah N. Farlow; Mark A. DePristo; Robert Roberts; Alex Stewart; Danish Saleheen; John Danesh; Stephen E. Epstein; Suthesh Sivapalaratnam; G. Kees Hovingh; John J. P. Kastelein; Nilesh J. Samani; Heribert Schunkert; Jeanette Erdmann

Summary Myocardial infarction (MI), a leading cause of death around the world, displays a complex pattern of inheritance1,2. When MI occurs early in life, the role of inheritance is substantially greater1. Previously, rare mutations in low-density lipoprotein (LDL) genes have been shown to contribute to MI risk in individual families3–8 whereas common variants at more than 45 loci have been associated with MI risk in the population9–15. Here, we evaluate the contribution of rare mutations to MI risk in the population. We sequenced the protein-coding regions of 9,793 genomes from patients with MI at an early age (≤50 years in males and ≤60 years in females) along with MI-free controls. We identified two genes where rare coding-sequence mutations were more frequent in cases versus controls at exome-wide significance. At low-density lipoprotein receptor (LDLR), carriers of rare, damaging mutations (3.1% of cases versus 1.3% of controls) were at 2.4-fold increased risk for MI; carriers of null alleles at LDLR were at even higher risk (13-fold difference). This sequence-based estimate of the proportion of early MI cases due to LDLR mutations is remarkably similar to an estimate made more than 40 years ago using total cholesterol16. At apolipoprotein A-V (APOA5), carriers of rare nonsynonymous mutations (1.4% of cases versus 0.6% of controls) were at 2.2-fold increased risk for MI. When compared with non-carriers, LDLR mutation carriers had higher plasma LDL cholesterol whereas APOA5 mutation carriers had higher plasma triglycerides. Recent evidence has connected MI risk with coding sequence mutations at two genes functionally related to APOA5, namely lipoprotein lipase15,17 and apolipoprotein C318,19. When combined, these observations suggest that, beyond LDL cholesterol, disordered metabolism of triglyceride-rich lipoproteins contributes to MI risk.


Cancer Discovery | 2014

MAP Kinase Pathway Alterations in BRAF-Mutant Melanoma Patients with Acquired Resistance to Combined RAF/MEK Inhibition

Nikhil Wagle; Eliezer M. Van Allen; Daniel J. Treacy; Dennie T. Frederick; Zachary A. Cooper; Amaro Taylor-Weiner; Mara Rosenberg; Eva M. Goetz; Ryan J. Sullivan; Deborah N. Farlow; Dennis Friedrich; Kristin Anderka; Danielle Perrin; Cory M. Johannessen; Aaron McKenna; Kristian Cibulskis; Gregory V. Kryukov; Eran Hodis; Donald P. Lawrence; Sheila Fisher; Gad Getz; Stacey Gabriel; Scott L. Carter; Keith T. Flaherty; Jennifer A. Wargo; Levi A. Garraway

Treatment of BRAF-mutant melanoma with combined dabrafenib and trametinib, which target RAF and the downstream MAP-ERK kinase (MEK)1 and MEK2 kinases, respectively, improves progression-free survival and response rates compared with dabrafenib monotherapy. Mechanisms of clinical resistance to combined RAF/MEK inhibition are unknown. We performed whole-exome sequencing (WES) and whole-transcriptome sequencing (RNA-seq) on pretreatment and drug-resistant tumors from five patients with acquired resistance to dabrafenib/trametinib. In three of these patients, we identified additional mitogen-activated protein kinase (MAPK) pathway alterations in the resistant tumor that were not detected in the pretreatment tumor, including a novel activating mutation in MEK2 (MEK2(Q60P)). MEK2(Q60P) conferred resistance to combined RAF/MEK inhibition in vitro, but remained sensitive to inhibition of the downstream kinase extracellular signal-regulated kinase (ERK). The continued MAPK signaling-based resistance identified in these patients suggests that alternative dosing of current agents, more potent RAF/MEK inhibitors, and/or inhibition of the downstream kinase ERK may be needed for durable control of BRAF-mutant melanoma.


PLOS Genetics | 2011

Genome-Wide Association Study of Coronary Heart Disease and Its Risk Factors in 8,090 African Americans: The NHLBI CARe Project

Guillaume Lettre; C. Palmer; Taylor Young; Kenechi G. Ejebe; Hooman Allayee; Emelia J. Benjamin; Franklyn I Bennett; Donald W. Bowden; Aravinda Chakravarti; Al Dreisbach; Deborah N. Farlow; Aaron R. Folsom; Myriam Fornage; Terrence Forrester; Ervin R. Fox; Christopher A. Haiman; Jaana Hartiala; Tamara B. Harris; Stanley L. Hazen; Susan R. Heckbert; Brian E. Henderson; Joel N. Hirschhorn; Brendan J. Keating; Stephen B. Kritchevsky; Emma K. Larkin; Mingyao Li; Megan E. Rudock; Colin A. McKenzie; James B. Meigs; Yang A. Meng

Coronary heart disease (CHD) is the leading cause of mortality in African Americans. To identify common genetic polymorphisms associated with CHD and its risk factors (LDL- and HDL-cholesterol (LDL-C and HDL-C), hypertension, smoking, and type-2 diabetes) in individuals of African ancestry, we performed a genome-wide association study (GWAS) in 8,090 African Americans from five population-based cohorts. We replicated 17 loci previously associated with CHD or its risk factors in Caucasians. For five of these regions (CHD: CDKN2A/CDKN2B; HDL-C: FADS1-3, PLTP, LPL, and ABCA1), we could leverage the distinct linkage disequilibrium (LD) patterns in African Americans to identify DNA polymorphisms more strongly associated with the phenotypes than the previously reported index SNPs found in Caucasian populations. We also developed a new approach for association testing in admixed populations that uses allelic and local ancestry variation. Using this method, we discovered several loci that would have been missed using the basic allelic and global ancestry information only. Our conclusions suggest that no major loci uniquely explain the high prevalence of CHD in African Americans. Our project has developed resources and methods that address both admixture- and SNP-association to maximize power for genetic discovery in even larger African-American consortia.


Human Molecular Genetics | 2011

Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource study

Ervin R. Fox; J. Hunter Young; Yali Li; Albert W. Dreisbach; Brendan J. Keating; Solomon K. Musani; Kiang Liu; Alanna C. Morrison; Santhi K. Ganesh; Abdullah Kutlar; Josef F. Polak; Richard R. Fabsitz; Daniel L. Dries; Deborah N. Farlow; Susan Redline; Adebowale Adeyemo; Joel N. Hirschorn; Yan V. Sun; Sharon B. Wyatt; Alan D. Penman; Walter Palmas; Jerome I. Rotter; Raymond R. Townsend; Ayo Doumatey; Bamidele O. Tayo; Thomas H. Mosley; Helen N. Lyon; Sun J. Kang; Charles N. Rotimi; Richard S. Cooper

The prevalence of hypertension in African Americans (AAs) is higher than in other US groups; yet, few have performed genome-wide association studies (GWASs) in AA. Among people of European descent, GWASs have identified genetic variants at 13 loci that are associated with blood pressure. It is unknown if these variants confer susceptibility in people of African ancestry. Here, we examined genome-wide and candidate gene associations with systolic blood pressure (SBP) and diastolic blood pressure (DBP) using the Candidate Gene Association Resource (CARe) consortium consisting of 8591 AAs. Genotypes included genome-wide single-nucleotide polymorphism (SNP) data utilizing the Affymetrix 6.0 array with imputation to 2.5 million HapMap SNPs and candidate gene SNP data utilizing a 50K cardiovascular gene-centric array (ITMAT-Broad-CARe [IBC] array). For Affymetrix data, the strongest signal for DBP was rs10474346 (P= 3.6 × 10−8) located near GPR98 and ARRDC3. For SBP, the strongest signal was rs2258119 in C21orf91 (P= 4.7 × 10−8). The top IBC association for SBP was rs2012318 (P= 6.4 × 10−6) near SLC25A42 and for DBP was rs2523586 (P= 1.3 × 10−6) near HLA-B. None of the top variants replicated in additional AA (n = 11 882) or European-American (n = 69 899) cohorts. We replicated previously reported European-American blood pressure SNPs in our AA samples (SH2B3, P= 0.009; TBX3-TBX5, P= 0.03; and CSK-ULK3, P= 0.0004). These genetic loci represent the best evidence of genetic influences on SBP and DBP in AAs to date. More broadly, this work supports that notion that blood pressure among AAs is a trait with genetic underpinnings but also with significant complexity.


Circulation-cardiovascular Genetics | 2010

Candidate gene association resource (CARe): design, methods, and proof of concept.

Kiran Musunuru; Guillaume Lettre; Taylor Young; Deborah N. Farlow; James P. Pirruccello; Kenechi G. Ejebe; Brendan J. Keating; Qiong Yang; Ming-Huei Chen; Nina Lapchyk; Andrew Crenshaw; Liuda Ziaugra; Anthony Rachupka; Emelia J. Benjamin; L. Adrienne Cupples; Myriam Fornage; Ervin R. Fox; Susan R. Heckbert; Joel N. Hirschhorn; Christopher Newton-Cheh; Marcia M. Nizzari; Dina N. Paltoo; George J. Papanicolaou; Sanjay R. Patel; Bruce M. Psaty; Daniel J. Rader; Susan Redline; Stephen S. Rich; Jerome I. Rotter; Herman A. Taylor

Background— The National Heart, Lung, and Blood Institutes Candidate Gene Association Resource (CARe), a planned cross-cohort analysis of genetic variation in cardiovascular, pulmonary, hematologic, and sleep-related traits, comprises >40 000 participants representing 4 ethnic groups in 9 community-based cohorts. The goals of CARe include the discovery of new variants associated with traits using a candidate gene approach and the discovery of new variants using the genome-wide association mapping approach specifically in African Americans. Methods and Results— CARe has assembled DNA samples for >40 000 individuals self-identified as European American, African American, Hispanic, or Chinese American, with accompanying data on hundreds of phenotypes that have been standardized and deposited in the CARe Phenotype Database. All participants were genotyped for 7 single-nucleotide polymorphisms (SNPs) selected based on prior association evidence. We performed association analyses relating each of these SNPs to lipid traits, stratified by sex and ethnicity, and adjusted for age and age squared. In at least 2 of the ethnic groups, SNPs near CETP , LIPC , and LPL strongly replicated for association with high-density lipoprotein cholesterol concentrations, PCSK9 with low-density lipoprotein cholesterol levels, and LPL and APOA5 with serum triglycerides. Notably, some SNPs showed varying effect sizes and significance of association in different ethnic groups. Conclusions— The CARe Pilot Study validates the operational framework for phenotype collection, SNP genotyping, and analytic pipeline of the CARe project and validates the planned candidate gene study of ≈2000 biological candidate loci in all participants and genome-wide association study in ≈8000 African American participants. CARe will serve as a valuable resource for the scientific community.Background—The National Heart, Lung, and Blood Institute’s Candidate Gene Association Resource (CARe), a planned cross-cohort analysis of genetic variation in cardiovascular, pulmonary, hematologic, and sleep-related traits, comprises >40 000 participants representing 4 ethnic groups in 9 community-based cohorts. The goals of CARe include the discovery of new variants associated with traits using a candidate gene approach and the discovery of new variants using the genome-wide association mapping approach specifically in African Americans. Methods and Results—CARe has assembled DNA samples for >40 000 individuals self-identified as European American, African American, Hispanic, or Chinese American, with accompanying data on hundreds of phenotypes that have been standardized and deposited in the CARe Phenotype Database. All participants were genotyped for 7 single-nucleotide polymorphisms (SNPs) selected based on prior association evidence. We performed association analyses relating each of these SNPs to lipid traits, stratified by sex and ethnicity, and adjusted for age and age squared. In at least 2 of the ethnic groups, SNPs near CETP, LIPC, and LPL strongly replicated for association with high-density lipoprotein cholesterol concentrations, PCSK9 with low-density lipoprotein cholesterol levels, and LPL and APOA5 with serum triglycerides. Notably, some SNPs showed varying effect sizes and significance of association in different ethnic groups. Conclusions—The CARe Pilot Study validates the operational framework for phenotype collection, SNP genotyping, and analytic pipeline of the CARe project and validates the planned candidate gene study of ≈2000 biological candidate loci in all participants and genome-wide association study in ≈8000 African American participants. CARe will serve as a valuable resource for the scientific community.


Circulation-cardiovascular Genetics | 2011

Large-Scale Candidate Gene Analysis in Whites and African Americans Identifies IL6R Polymorphism in Relation to Atrial Fibrillation The National Heart, Lung, and Blood Institute's Candidate Gene Association Resource (CARe) Project

Renate B. Schnabel; Kathleen F. Kerr; Steven A. Lubitz; Ermeg L. Alkylbekova; Gregory M. Marcus; Moritz F. Sinner; Jared W. Magnani; Philip A. Wolf; Rajat Deo; Donald M. Lloyd-Jones; Kathryn L. Lunetta; Reena Mehra; Daniel Levy; Ervin R. Fox; Dan E. Arking; Thomas H. Mosley; Martina Müller-Nurasyid; Taylor R. Young; H.-Erich Wichmann; Sudha Seshadri; Deborah N. Farlow; Jerome I. Rotter; Elsayed Z. Soliman; Nicole L. Glazer; James G. Wilson; Monique M.B. Breteler; Nona Sotoodehnia; Christopher Newton-Cheh; Stefan Kääb; Patrick T. Ellinor

Background— The genetic background of atrial fibrillation (AF) in whites and African Americans is largely unknown. Genes in cardiovascular pathways have not been systematically investigated. Methods and Results— We examined a panel of approximately 50 000 common single-nucleotide polymorphisms (SNPs) in 2095 cardiovascular candidate genes and AF in 3 cohorts with participants of European (n=18 524; 2260 cases) or African American descent (n=3662; 263 cases) in the National Heart, Lung, and Blood Institutes Candidate Gene Association Resource. Results in whites were followed up in the German Competence Network for AF (n=906, 468 cases). The top result was assessed in relation to incident ischemic stroke in the Cohorts for Heart and Aging Research in Genomic Epidemiology Stroke Consortium (n=19 602 whites, 1544 incident strokes). SNP rs4845625 in the IL6R gene was associated with AF (relative risk [RR] C allele, 0.90; 95% confidence interval [CI], 0.85–0.95; P=0.0005) in whites but did not reach statistical significance in African Americans (RR, 0.86; 95% CI, 0.72–1.03; P=0.09). The results were comparable in the German AF Network replication, (RR, 0.71; 95% CI, 0.57–0.89; P=0.003). No association between rs4845625 and stroke was observed in whites. The known chromosome 4 locus near PITX2 in whites also was associated with AF in African Americans (rs4611994; hazard ratio, 1.40; 95% CI, 1.16–1.69; P=0.0005). Conclusions— In a community-based cohort meta-analysis, we identified genetic association in IL6R with AF in whites. Additionally, we demonstrated that the chromosome 4 locus known from recent genome-wide association studies in whites is associated with AF in African Americans.Background —The genetic background of atrial fibrillation (AF) in whites and African Americans is largely unknown. Genes in cardiovascular pathways have not been systematically investigated. Methods and Results —We examined a panel of approximately 50,000 common single nucleotide polymorphisms (SNPs) in 2,095 cardiovascular candidate genes and AF in three cohorts with participants of European (n=18,524; 2,260 cases) or African American descent (n=3,662; 263 cases) in the National Heart Lung and Blood Institute9s C andidate Gene A ssociation Re source. Results in whites were followed up in the German Competence Network for AF (n=906, 468 cases). The top result was assessed in relation to incident ischemic stroke in the C ohorts for H eart and A ging R esearch in G enomic Epidemiology Stroke Consortium (n= 19,602 whites, 1544 incident strokes). SNP rs4845625 in the IL6R gene was associated with AF (relative risk (RR) C allele, 0.90; 95% confidence interval (CI), 0.85-0.95; P =0.0005) in whites, but did not reach statistical significance in African Americans (RR, 0.86; 95% CI, 0.72-1.03; P =0.09). The results were comparable in the German AF Network replication, (RR, 0.71; 95% CI, 0.57-0.89; P=0.003). No association between rs4845625 and stroke was observed in whites. The known chromosome 4 locus near PITX2 in whites also was associated with AF in African Americans (rs4611994, hazard ratio, 1.40; 95% CI, 1.16-1.69; P =0.0005). Conclusions —In a community-based cohort meta-analysis, we identified genetic association in IL6R with AF in whites. Additionally, we demonstrated that the chromosome 4 locus known from recent genome-wide association studies in whites is associated with AF in African Americans.


Circulation-cardiovascular Genetics | 2013

Genome-Wide Association Study of Cardiac Structure and Systolic Function in African Americans: The Candidate Gene Association Resource (CARe) Study

Ervin R. Fox; Solomon K. Musani; Maja Barbalic; Honghuang Lin; Bing Yu; Kofo O. Ogunyankin; Nicholas L. Smith; Abdullah Kutlar; Nicole L. Glazer; Wendy S. Post; Dina N. Paltoo; Daniel L. Dries; Deborah N. Farlow; Christine W. Duarte; Sharon L.R. Kardia; Kristin J. Meyers; Yan V. Sun; Donna K. Arnett; Amit Patki; Jin Sha; Xiangqui Cui; Tandaw E. Samdarshi; Alan D. Penman; Kirsten Bibbins-Domingo; Petra Bůžková; Emelia J. Benjamin; David A. Bluemke; Alanna C. Morrison; Gerardo Heiss; J. Jeffrey Carr

Background—Using data from 4 community-based cohorts of African Americans, we tested the association between genome-wide markers (single-nucleotide polymorphisms) and cardiac phenotypes in the Candidate-gene Association Resource study. Methods and Results—Among 6765 African Americans, we related age, sex, height, and weight-adjusted residuals for 9 cardiac phenotypes (assessed by echocardiogram or magnetic resonance imaging) to 2.5 million single-nucleotide polymorphisms genotyped using Genome-wide Affymetrix Human SNP Array 6.0 (Affy6.0) and the remainder imputed. Within the cohort, genome-wide association analysis was conducted, followed by meta-analysis across cohorts using inverse variance weights (genome-wide significance threshold=4.0 ×10−7). Supplementary pathway analysis was performed. We attempted replication in 3 smaller cohorts of African ancestry and tested lookups in 1 consortium of European ancestry (EchoGEN). Across the 9 phenotypes, variants in 4 genetic loci reached genome-wide significance: rs4552931 in UBE2V2 (P=1.43×10−7) for left ventricular mass, rs7213314 in WIPI1 (P=1.68×10−7) for left ventricular internal diastolic diameter, rs1571099 in PPAPDC1A (P=2.57×10−8) for interventricular septal wall thickness, and rs9530176 in KLF5 (P=4.02×10−7) for ejection fraction. Associated variants were enriched in 3 signaling pathways involved in cardiac remodeling. None of the 4 loci replicated in cohorts of African ancestry was confirmed in lookups in EchoGEN. Conclusions—In the largest genome-wide association study of cardiac structure and function to date in African Americans, we identified 4 genetic loci related to left ventricular mass, interventricular septal wall thickness, left ventricular internal diastolic diameter, and ejection fraction, which reached genome-wide significance. Replication results suggest that these loci may be unique to individuals of African ancestry. Additional large-scale studies are warranted for these complex phenotypes.


Circulation-cardiovascular Genetics | 2015

Exome Sequencing in Suspected Monogenic Dyslipidemias

Nathan O. Stitziel; Gina M. Peloso; Marianne Abifadel; Angelo B. Cefalù; Sigrid W. Fouchier; Mahdi M. Motazacker; Hayato Tada; Daniel B. Larach; Zuhier Awan; Jorge F. Haller; Clive R. Pullinger; Mathilde Varret; Jean Pierre Rabès; Davide Noto; Patrizia Tarugi; Masa-aki Kawashiri; Atsushi Nohara; Masakazu Yamagishi; Marjorie Risman; Rahul C. Deo; Isabelle Ruel; Jay Shendure; Deborah A. Nickerson; James G. Wilson; Stephen S. Rich; Namrata Gupta; Deborah N. Farlow; Benjamin M. Neale; Mark J. Daly; John P. Kane

Background—Exome sequencing is a promising tool for gene mapping in Mendelian disorders. We used this technique in an attempt to identify novel genes underlying monogenic dyslipidemias. Methods and Results—We performed exome sequencing on 213 selected family members from 41 kindreds with suspected Mendelian inheritance of extreme levels of low-density lipoprotein cholesterol (after candidate gene sequencing excluded known genetic causes for high low-density lipoprotein cholesterol families) or high-density lipoprotein cholesterol. We used standard analytic approaches to identify candidate variants and also assigned a polygenic score to each individual to account for their burden of common genetic variants known to influence lipid levels. In 9 families, we identified likely pathogenic variants in known lipid genes (ABCA1, APOB, APOE, LDLR, LIPA, and PCSK9); however, we were unable to identify obvious genetic etiologies in the remaining 32 families, despite follow-up analyses. We identified 3 factors that limited novel gene discovery: (1) imperfect sequencing coverage across the exome hid potentially causal variants; (2) large numbers of shared rare alleles within families obfuscated causal variant identification; and (3) individuals from 15% of families carried a significant burden of common lipid-related alleles, suggesting complex inheritance can masquerade as monogenic disease. Conclusions—We identified the genetic basis of disease in 9 of 41 families; however, none of these represented novel gene discoveries. Our results highlight the promise and limitations of exome sequencing as a discovery technique in suspected monogenic dyslipidemias. Considering the confounders identified may inform the design of future exome sequencing studies.

Collaboration


Dive into the Deborah N. Farlow's collaboration.

Top Co-Authors

Avatar

Ervin R. Fox

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jerome I. Rotter

Los Angeles Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dina N. Paltoo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Myriam Fornage

University of Texas Health Science Center at Houston

View shared research outputs
Researchain Logo
Decentralizing Knowledge