Deborah Prusak
University of Texas Medical Branch
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Deborah Prusak.
Journal of Virology | 2013
Olivier Escaffre; Viktoriya Borisevich; J. Russ Carmical; Deborah Prusak; Joseph Prescott; Heinz Feldmann; Barry Rockx
ABSTRACT Hendra virus (HeV) and Nipah virus (NiV) are deadly zoonotic viruses for which no vaccines or therapeutics are licensed for human use. Henipavirus infection causes severe respiratory illness and encephalitis. Although the exact route of transmission in human is unknown, epidemiological studies and in vivo studies suggest that the respiratory tract is important for virus replication. However, the target cells in the respiratory tract are unknown, as are the mechanisms by which henipaviruses can cause disease. In this study, we characterized henipavirus pathogenesis using primary cells derived from the human respiratory tract. The growth kinetics of NiV-Malaysia, NiV-Bangladesh, and HeV were determined in bronchial/tracheal epithelial cells (NHBE) and small airway epithelial cells (SAEC). In addition, host responses to infection were assessed by gene expression analysis and immunoassays. Viruses replicated efficiently in both cell types and induced large syncytia. The host response to henipavirus infection in NHBE and SAEC highlighted a difference in the inflammatory response between HeV and NiV strains as well as intrinsic differences in the ability to mount an inflammatory response between NHBE and SAEC. These responses were highest during HeV infection in SAEC, as characterized by the levels of key cytokines (interleukin 6 [IL-6], IL-8, IL-1α, monocyte chemoattractant protein 1 [MCP-1], and colony-stimulating factors) responsible for immune cell recruitment. Finally, we identified virus strain-dependent variability in type I interferon antagonism in NHBE and SAEC: NiV-Malaysia counteracted this pathway more efficiently than NiV-Bangladesh and HeV. These results provide crucial new information in the understanding of henipavirus pathogenesis in the human respiratory tract at an early stage of infection.
Journal of Virology | 2012
Junping Ren; Qingrong Wang; Deepthi Kolli; Deborah Prusak; Chien Te K Tseng; Zhijian J. Chen; Kui Li; Thomas G. Wood; Xiaoyong Bao
ABSTRACT Human metapneumovirus (hMPV) is a leading cause of respiratory infections in pediatric populations globally, with no prophylactic or therapeutic measures. Recently, a recombinant hMPV lacking the M2-2 protein (rhMPV-ΔM2-2) demonstrated reduced replication in the respiratory tract of animal models, making it a promising live vaccine candidate. However, the exact nature of the interaction between the M2-2 protein and host cells that regulates viral infection/propagation is largely unknown. By taking advantage of the available reverse genetics system and ectopic expression system for viral protein, we found that M2-2 not only promotes viral gene transcription and replication but subverts host innate immunity, therefore identifying M2-2 as a novel virulence factor, in addition to the previously described hMPV G protein. Since we have shown that the RIG-I/MAVS pathway plays an important role in hMPV-induced signaling in airway epithelial cells, we investigated whether M2-2 antagonizes the host cellular responses by targeting this pathway. Reporter gene assays and coimmunoprecipitation studies indicated that M2-2 targets MAVS, an inhibitory mechanism different from what we previously reported for hMPV G, which affects RIG-I- but not MAVS-dependent gene transcription. In addition, we found that the domains of M2-2 responsible for the regulation of viral gene transcription and antiviral signaling are different. Our findings collectively demonstrate that M2-2 contributes to hMPV immune evasion through the inhibition of MAVS-dependent cellular responses.
Stem cell reports | 2017
Erica L. McGrath; Shannan L. Rossi; Steven G. Widen; Auston Cody Grant; Tiffany J. Dunn; Sasha R. Azar; Christopher M. Roundy; Ying Xiong; Deborah Prusak; Bradford D. Loucas; Thomas G. Wood; Yongjia Yu; Ildefonso Fernández-Salas; Scott C. Weaver; Nikos Vasilakis; Ping Wu
Summary Zika virus (ZIKV) infection causes microcephaly in a subset of infants born to infected pregnant mothers. It is unknown whether human individual differences contribute to differential susceptibility of ZIKV-related neuropathology. Here, we use an Asian-lineage ZIKV strain, isolated from the 2015 Mexican outbreak (Mex1-7), to infect primary human neural stem cells (hNSCs) originally derived from three individual fetal brains. All three strains of hNSCs exhibited similar rates of Mex1-7 infection and reduced proliferation. However, Mex1-7 decreased neuronal differentiation in only two of the three stem cell strains. Correspondingly, ZIKA-mediated transcriptome alterations were similar in these two strains but significantly different from that of the third strain with no ZIKV-induced neuronal reduction. This study thus confirms that an Asian-lineage ZIKV strain infects primary hNSCs and demonstrates a cell-strain-dependent response of hNSCs to ZIKV infection.
Journal of Biological Chemistry | 1999
Katsutoshi Suetomi; Zhijian Lu; Tonia Heck; Thomas G. Wood; Deborah Prusak; Karen J. Dunn; Javier Navarro
We have probed an epitope sequence (His18-Pro19-Lys20-Phe21) in interleukin-8 (IL-8) by site-directed mutagenesis. This work shows that single and double Ala substitutions of His18 and Phe21 in IL-8 reduced up to 77-fold the binding affinity to IL-8 receptor subtypes A (CXCR1) and B (CXCR2) and to the Duffy antigen. These Ala mutants triggered neutrophil degranulation and induced calcium responses mediated by CXCR1 and CXCR2. Single Asp or Ser substitutions, H18D, F21D, F21S, and double substitutions, H18A/F21D, H18A/F21S, and H18D/F21D, reduced up to 431-fold the binding affinity to CXCR1, CXCR2, and the Duffy antigen. Interestingly, double mutants with charged residue substitutions failed to trigger degranulation or to induce wild-type calcium responses mediated by CXCR1. Except for the H18A and F21A mutants, all other IL-8 mutants failed to induce superoxide production in neutrophils. This study demonstrates that IL-8 recognizes and activates CXCR1, CXCR2, and the Duffy antigen by distinct mechanisms.
American Journal of Physiology-endocrinology and Metabolism | 2011
Harini Sampath; Ayesha K. Batra; Vladimir Vartanian; J. Russ Carmical; Deborah Prusak; Irena B. King; Brian Lowell; Lauriel F. Earley; Thomas G. Wood; Daniel L. Marks; Amanda K. McCullough; Lloyd R. Stephen
Exposure to chronic and acute oxidative stress is correlated with many human diseases, including, but not limited to, cancer, heart disease, diabetes, and obesity. In addition to cellular lipids and proteins, cellular oxidative stress can result in damage to DNA bases, especially in mitochondrial DNA. We previously described the development of spontaneous late-onset obesity, hepatic steatosis, hyperinsulinemia, and hyperleptinemia in mice that are deficient in the DNA glycosylase nei-like 1 (NEIL1), which initiates base excision repair of several oxidatively damaged bases. In the current study, we report that exposure to a chronic oxidative stress in the form of a high-fat diet greatly accelerates the development of obesity in neil1(-/-) mice. Following a 5-wk high-fat diet challenge, neil1(-/-) mice gained significantly more body weight than neil1(+/+) littermates and had increased body fat accumulation and moderate to severe hepatic steatosis. Analysis of oxygen consumption by indirect calorimetry indicated a modest reduction in total oxygen consumption in neil1(-/-) mice that was abolished upon correction for lean body mass. Additionally, hepatic expression of several inflammatory genes was significantly upregulated in neil1(-/-) mice following high-fat diet challenge compared with chow-fed or neil1(+/+) counterparts. A long-term high-fat diet also induced glucose intolerance as well as a significant reduction in mitochondrial DNA and protein content in neil1(-/-) mice. Collectively, these data indicate that NEIL1 deficiency results in an increased susceptibility to obesity and related complications potentially by lowering the threshold for tolerance of cellular oxidative stress in neil1(-/-) mice.
PLOS ONE | 2009
Ping Liu; Muping Lu; Bing Tian; Kui Li; Roberto P. Garofalo; Deborah Prusak; Thomas G. Wood; Allan R. Brasier
Single stranded RNA (ssRNA) virus infection activates the retinoic acid inducible gene I (RIG-I)- mitochondrial antiviral signaling (MAVS) complex, a complex that coordinates the host innate immune response via the NF-κB and IRF3 pathways. Recent work has shown that the IκB kinase (IKK)γ scaffolding protein is the final common adapter protein required by RIG-I·MAVS to activate divergent rate-limiting kinases downstream controlling the NF-κB and IRF3 pathways. Previously we discovered a ubiquitous IKKγ splice-variant, IKKγΔ, that exhibits distinct signaling properties. Methodology/Principal Findings We examined the regulation and function of IKKγ splice forms in response to ssRNA virus infection, a condition that preferentially induces full length IKKγ-WT mRNA expression. In IKKγΔ-expressing cells, we found increased viral translation and cytopathic effect compared to those expressing full length IKKγ-WT. IKKγΔ fails to support viral-induced IRF3 activation in response to ssRNA infections; consequently type I IFN production and the induction of anti-viral interferon stimulated genes (ISGs) are significantly attenuated. By contrast, ectopic RIG-I·MAVS or TNFα-induced canonical NF-κB activation is preserved in IKKγΔ expressing cells. Increasing relative levels of IKKγ-WT to IKKγΔ (while keeping total IKKγ constant) results in increased type I IFN expression. Conversely, overexpressing IKKγΔ (in a background of constant IKKγ-WT expression) shows IKKγΔ functions as a dominant-negative IRF3 signaling inhibitor. IKKγΔ binds both IKK-α and β, but not TANK and IKKε, indicating that exon 5 encodes an essential TANK binding domain. Finally, IKKγΔ displaces IKKγWT from MAVS explaining its domainant negative effect. Conclusions/Significance Relative endogenous IKKγΔ expression affects cellular selection of inflammatory/anti-viral pathway responses to ssRNA viral infection.
Neuroscience | 2007
Gang Q. Li; Golda Anne Kevetter; Robert B. Leonard; Deborah Prusak; Thomas G. Wood; Manning J. Correia
Muscarinic acetylcholine receptors (mAChRs) are widely expressed in the CNS and peripheral nervous system and play an important role in modulating the cell activity and function. We have shown that the cholinergic agonist carbachol reduces the pigeons inwardly rectifying potassium channel (pKir2.1) ionic currents in native vestibular hair cells. We have cloned and sequenced pigeon mAChR subtypes M2-M5 and we have studied the expression of all five mAChR subtypes (M1-M5) in the pigeon vestibular end organs (semicircular canal ampullary cristae and utricular maculae), vestibular nerve fibers and the vestibular (Scarpas) ganglion using tissue immunohistochemistry (IH), dissociated single cell immunocytochemistry (IC) and Western blotting (WB). We found that vestibular hair cells, nerve fibers and ganglion cells each expressed all five (M1-M5) mAChR subtypes. Two of the three odd-numbered mAChRs (M1, M5) were present on the hair cell cilia, supporting cells and nerve terminals. And all three odd numbered mAChRs (M1, M3 and M5) were expressed on cuticular plates, myelin sheaths and Schwann cells. Even-numbered mAChRs were seen on the nerve terminals. M2 was also shown on the cuticular plates and supporting cells. Vestibular efferent fibers and terminals were not identified in our studies. Results from WB of the dissociated vestibular epithelia, nerve fibers and vestibular ganglia were consistent with the results from IH and IC. Our findings suggest that there is considerable co-expression of the subtypes on the neural elements of the labyrinth. Further electrophysiological and pharmacological studies should delineate the mechanisms of action of muscarinic acetylcholine receptors on structures in the labyrinth.
Biochimica et Biophysica Acta | 2010
Natalia Mast; Marjan Shafaati; Wahiduz A. Zaman; Wenchao Zheng; Deborah Prusak; Thomas G. Wood; G. A. S. Ansari; Anita Lövgren-Sandblom; Maria Olin; Ingemar Björkhem; Irina A. Pikuleva
Two diets simulating the recommendations of the American Heart Association to increase the intake of n-3 polyunsaturated fatty acids (n-3 PUFAs) were tested on Golden Syrian hamsters and compared to the diet simulating the current estimated consumption of fat in the United States. N-3 PUFAs were evaluated for their effects on serum and brain lipids and on the three cytochrome P450 enzymes (CYPs 7A1, 27A1, and 46A1) that play key roles in cholesterol elimination from different organs. Hamsters on the highest concentration of n-3 PUFAs had a statistically significant decrease in LDL and HDL cholesterol and no change in serum total cholesterol and triglycerides levels. CYP27A1 and CYP46A1 mRNA levels were increased in the liver and brain, respectively, whereas possible effects on CYP7A1 were obscured by a marked intergroup variability at mRNA, protein, and sterol product levels. Increased levels of CYP46A1 mRNA in the brain did not lead to significant changes in the levels of lathosterol, 24S-hydroxycholesterol or cholesterol in this organ. The data obtained are discussed in relation to inconsistent effects of n-3 PUFAs on serum lipids in human trials and reported positive effects of fish oil on cognitive function.
Biochimica et Biophysica Acta | 1999
Ashok K. Chopra; Deborah A. Ribardo; Thomas G. Wood; Deborah Prusak; X.-J. Xu; Johnny W. Peterson
A phospholipase A2-activating protein (PLAP) cDNA was cloned and sequenced from a human monocyte cDNA library, and expressed as a histidine-tagged fusion protein. The DNA-deduced aa sequence of human PLAP was 80,826 Da; however, SDS-PAGE analysis revealed a 72-74 kDa protein which matched the size of native PLAP from human monocytes. Anti-sense plap oligonucleotide blocked cholera toxin-induced release of 3H-labeled arachidonic acid from cells, indicating a potential role for PLAP in regulating phospholipase A2 activity.
Virology | 2016
Yu Chen; Xiaoling Deng; Junfang Deng; Jiehua Zhou; Yuping Ren; Shengxuan Liu; Deborah Prusak; Thomas G. Wood; Xiaoyong Bao
Abstract Human metapneumovirus (hMPV) is a major cause of lower respiratory infection in young children. Repeated infections occur throughout life, but its immune evasion mechanisms are largely unknown. We recently found that hMPV M2-2 protein elicits immune evasion by targeting mitochondrial antiviral-signaling protein (MAVS), an antiviral signaling molecule. However, the molecular mechanisms underlying such inhibition are not known. Our mutagenesis studies revealed that PDZ-binding motifs, 29-DEMI-32 and 39-KEALSDGI-46, located in an immune inhibitory region of M2-2, are responsible for M2-2-mediated immune evasion. We also found both motifs prevent TRAF5 and TRAF6, the MAVS downstream adaptors, to be recruited to MAVS, while the motif 39-KEALSDGI-46 also blocks TRAF3 migrating to MAVS. In parallel, these TRAFs are important in activating transcription factors NF-kB and/or IRF-3 by hMPV. Our findings collectively demonstrate that M2-2 uses its PDZ motifs to launch the hMPV immune evasion through blocking the interaction of MAVS and its downstream TRAFs.