Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deborah R. Taylor is active.

Publication


Featured researches published by Deborah R. Taylor.


Journal of Virology | 2005

New Antiviral Pathway That Mediates Hepatitis C Virus Replicon Interferon Sensitivity through ADAR1

Deborah R. Taylor; Montserrat Puig; Miriam E. R. Darnell; Kathleen Mihalik; Stephen M. Feinstone

ABSTRACT While many clinical hepatitis C virus (HCV) infections are resistant to alpha interferon (IFN-α) therapy, subgenomic in vitro self-replicating HCV RNAs (HCV replicons) are characterized by marked IFN-α sensitivity. IFN-α treatment of replicon-containing cells results in a rapid loss of viral RNA via translation inhibition through double-stranded RNA-activated protein kinase (PKR) and also through a new pathway involving RNA editing by an adenosine deaminase that acts on double-stranded RNA (ADAR1). More than 200 genes are induced by IFN-α, and yet only a few are attributed with an antiviral role. We show that inhibition of both PKR and ADAR1 by the addition of adenovirus-associated RNA stimulates replicon expression and reduces the amount of inosine recovered from RNA in replicon cells. Small inhibitory RNA, specific for ADAR1, stimulated the replicon 40-fold, indicating that ADAR1 has a role in limiting replication of the viral RNA. This is the first report of ADARs involvement in a potent antiviral pathway and its action to specifically eliminate HCV RNA through adenosine to inosine editing. These results may explain successful HCV replicon clearance by IFN-α in vitro and may provide a promising new therapeutic strategy for HCV as well as other viral infections.


Journal of Virology | 2003

Protein Synthesis and Endoplasmic Reticulum Stress Can Be Modulated by the Hepatitis C Virus Envelope Protein E2 through the Eukaryotic Initiation Factor 2α Kinase PERK

Nicole Pavio; Patrick R. Romano; Thomas M. Graczyk; Stephen M. Feinstone; Deborah R. Taylor

ABSTRACT The hepatitis C virus envelope protein, E2, is an endoplasmic reticulum (ER)-bound protein that contains a region of sequence homology with the double-stranded RNA-activated protein kinase PKR and its substrate, the eukaryotic translation initiation factor 2 (eIF2). We previously reported that E2 modulates global translation through inhibition of the interferon-induced antiviral protein PKR through its PKR-eIF2α phosphorylation site homology domain (PePHD). Here we show that the PKR-like ER-resident kinase (PERK) binds to and is also inhibited by E2. At low expression levels, E2 induced ER stress, but at high expression levels, and in vitro, E2 inhibited PERK kinase activity. Mammalian cells that stably express E2 were refractory to the translation-inhibitory effects of ER stress inducers, and E2 relieved general translation inhibition induced by PERK. The PePHD of E2 was required for the rescue of translation that was inhibited by activated PERK, similar to our previous findings with PKR. Here we report the inhibition of a second eIF2α kinase by E2, and these results are consistent with a pseudosubstrate mechanism of inhibition of eIF2α kinases. These findings may also explain how the virus promotes persistent infection by overcoming the cellular ER stress response.


Journal of Virology | 2002

Detection of a Novel Unglycosylated Form of Hepatitis C Virus E2 Envelope Protein That Is Located in the Cytosol and Interacts with PKR

Nicole Pavio; Deborah R. Taylor; Michael M. C. Lai

ABSTRACT The hepatitis C virus (HCV) envelope protein E2 has been shown to accumulate in the lumen of the endoplasmic reticulum (ER) as a properly folded glycoprotein as well as large aggregates of misfolded proteins. In the present study, we have identified an additional unglycosylated species, with an apparent molecular mass of 38 kDa (E2-p38). In contrast to the glycosylated E2, E2-p38 is significantly less stable and is degraded through the proteasome pathway. Correspondingly, E2-p38 is found to be ubiquitinated. E2-p38 is localized mostly in the cytosol, in contrast to the glycosylated form, which is exclusively membrane associated. Alpha interferon (IFN-α) treatment or overexpression of the double-stranded RNA-activated protein kinase (PKR) significantly increased the stability of E2-p38, consistent with a previous report (D. R. Taylor, S. T. Shi, P. R. Romano, G. N. Barber, and M. M. Lai, Science 285:107–110, 1999) that E2 interacts with PKR and inhibits its kinase activity. Direct interaction between PKR and E2-p38, but not the glycosylated form of E2, was also observed. These results show that E2-p38 is the form of E2 that interacts with PKR in the cytosol and may contribute to the resistance of HCV to IFN-α. Thus, an ER protein can exist in the cytosol as an unglycosylated species and impair cellular functions.


Journal of Virology | 2001

Hepatitis C Virus Envelope Protein E2 Does Not Inhibit PKR by Simple Competition with Autophosphorylation Sites in the RNA-Binding Domain

Deborah R. Taylor; Bin Tian; Patrick R. Romano; Alan G. Hinnebusch; Michael M. C. Lai; Michael B. Mathews

ABSTRACT Double-stranded-RNA (dsRNA)-dependent protein kinase PKR is induced by interferon and activated upon autophosphorylation. We previously identified four autophosphorylated amino acids and elucidated their participation in PKR activation. Three of these sites are in the central region of the protein, and one is in the kinase domain. Here we describe the identification of four additional autophosphorylated amino acids in the spacer region that separates the two dsRNA-binding motifs in the RNA-binding domain. Eight amino acids, including these autophosphorylation sites, are duplicated in hepatitis C virus (HCV) envelope protein E2. This region of E2 is required for its inhibition of PKR although the mechanism of inhibition is not known. Replacement of all four of these residues in PKR with alanines did not dramatically affect kinase activity in vitro or in yeast Saccharomyces cerevisiae. However, when coupled with mutations of serine 242 and threonines 255 and 258 in the central region, these mutations increased PKR protein expression in mammalian cells, consistent with diminished kinase activity. A synthetic peptide corresponding to this region of PKR was phosphorylated in vitro by PKR, but phosphorylation was strongly inhibited after PKR was preincubated with HCV E2. Another synthetic peptide, corresponding to the central region of PKR and containing serine 242, was also phosphorylated by active PKR, but E2 did not inhibit this peptide as efficiently. Neither of the PKR peptides was able to disrupt the HCV E2-PKR interaction. Taken together, these results show that PKR is autophosphorylated on serine 83 and threonines 88, 89, and 90, that this autophosphorylation may enhance kinase activation, and that the inhibition of PKR by HCV E2 is not solely due to duplication of and competition with these autophosphorylation sites.


Journal of Virology | 2010

Achieving a Golden Mean: Mechanisms by Which Coronaviruses Ensure Synthesis of the Correct Stoichiometric Ratios of Viral Proteins

Ewan P. Plant; Rasa Rakauskaite; Deborah R. Taylor; Jonathan D. Dinman

ABSTRACT In retroviruses and the double-stranded RNA totiviruses, the efficiency of programmed −1 ribosomal frameshifting is critical for ensuring the proper ratios of upstream-encoded capsid proteins to downstream-encoded replicase enzymes. The genomic organizations of many other frameshifting viruses, including the coronaviruses, are very different, in that their upstream open reading frames encode nonstructural proteins, the frameshift-dependent downstream open reading frames encode enzymes involved in transcription and replication, and their structural proteins are encoded by subgenomic mRNAs. The biological significance of frameshifting efficiency and how the relative ratios of proteins encoded by the upstream and downstream open reading frames affect virus propagation has not been explored before. Here, three different strategies were employed to test the hypothesis that the −1 PRF signals of coronaviruses have evolved to produce the correct ratios of upstream- to downstream-encoded proteins. Specifically, infectious clones of the severe acute respiratory syndrome (SARS)-associated coronavirus harboring mutations that lower frameshift efficiency decreased infectivity by >4 orders of magnitude. Second, a series of frameshift-promoting mRNA pseudoknot mutants was employed to demonstrate that the frameshift signals of the SARS-associated coronavirus and mouse hepatitis virus have evolved to promote optimal frameshift efficiencies. Finally, we show that a previously described frameshift attenuator element does not actually affect frameshifting per se but rather serves to limit the fraction of ribosomes available for frameshifting. The findings of these analyses all support a “golden mean” model in which viruses use both programmed ribosomal frameshifting and translational attenuation to control the relative ratios of their encoded proteins.


Journal of Virological Methods | 2004

Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV

Miriam E. R. Darnell; Kanta Subbarao; Stephen M. Feinstone; Deborah R. Taylor

Abstract Severe acute respiratory syndrome (SARS) is a life-threatening disease caused by a novel coronavirus termed SARS-CoV. Due to the severity of this disease, the World Health Organization (WHO) recommends that manipulation of active viral cultures of SARS-CoV be performed in containment laboratories at biosafety level 3 (BSL3). The virus was inactivated by ultraviolet light (UV) at 254nm, heat treatment of 65°C or greater, alkaline (pH > 12) or acidic (pH < 3) conditions, formalin and glutaraldehyde treatments. We describe the kinetics of these efficient viral inactivation methods, which will allow research with SARS-CoV containing materials, that are rendered non-infectious, to be conducted at reduced safety levels.


Journal of Virology | 2004

Long-Term Persistence of Infection in Chimpanzees Inoculated with an Infectious Hepatitis C Virus Clone Is Associated with a Decrease in the Viral Amino Acid Substitution Rate and Low Levels of Heterogeneity

Javier Fernandez; Deborah R. Taylor; Duncan R. Morhardt; Kathleen Mihalik; Montserrat Puig; Charles M. Rice; Stephen M. Feinstone; Marian E. Major

ABSTRACT Two chimpanzees, 1535 and 1536, became persistently infected following inoculation with RNA transcripts from cDNA clones of hepatitis C virus (HCV). Analysis of the HCV genomes from both animals showed an accumulation of amino acid substitutions over time. The appearance of substitutions in the envelope genes was associated with increased antienvelope antibody titers. However, extensive mutations were not incorporated into hypervariable region 1 (HVR1). A comparison of the nonsynonymous substitution rate/synonymous substitution rate was made at various time points to analyze selective pressure. The highest level of selective pressure occurred during the acute phase and decreased as the infection continued. The nonsynonymous substitution rate was initially higher than the synonymous substitution rate but decreased over time from 3.3 × 10−3 (chimpanzee 1535) and 3.2 × 10−3 (chimpanzee 1536) substitutions/site/year at week 26 to 1.4 × 10−3 (chimpanzee 1535) and 1.7 × 10−3 (chimpanzee 1536) at week 216, while the synonymous substitution rate remained steady at ∼1 × 10−3 substitutions/site/year. Analysis of PCR products using single-stranded conformational polymorphism indicated a low level of heterogeneity in the viral genome. The results of these studies confirm that the persistence of infection is not solely due to changes in HVR1 or heterogeneity and that the majority of variants observed in natural infections could not arise simply through mutation during the time period most humans and chimpanzees are observed. These data also indicate that immune pressure and selection continue throughout the chronic phase.


Antiviral Research | 2011

Interference of ribosomal frameshifting by antisense peptide nucleic acids suppresses SARS coronavirus replication.

Dae-Gyun Ahn; Wooseong Lee; Jin-Kyu Choi; Seong-Jun Kim; Ewan P. Plant; Fernando Almazán; Deborah R. Taylor; Luis Enjuanes; Jong-Won Oh

Abstract The programmed −1 ribosomal frameshifting (−1 PRF) utilized by eukaryotic RNA viruses plays a crucial role for the controlled, limited synthesis of viral RNA replicase polyproteins required for genome replication. The viral RNA replicase polyproteins of severe acute respiratory syndrome coronavirus (SARS-CoV) are encoded by the two overlapping open reading frames 1a and 1b, which are connected by a −1 PRF signal. We evaluated the antiviral effects of antisense peptide nucleic acids (PNAs) targeting a highly conserved RNA sequence on the – PRF signal. The ribosomal frameshifting was inhibited by the PNA, which bound sequence-specifically a pseudoknot structure in the −1 PRF signal, in cell lines as assessed using a dual luciferase-based reporter plasmid containing the −1 PRF signal. Treatment of cells, which were transfected with a SARS-CoV-replicon expressing firefly luciferase, with the PNA fused to a cell-penetrating peptide (CPP) resulted in suppression of the replication of the SARS-CoV replicon, with a 50% inhibitory concentration of 4.4μM. There was no induction of type I interferon responses by PNA treatment, suggesting that the effect of PNA is not due to innate immune responses. Our results demonstrate that −1 PRF, critical for SARS-CoV viral replication, can be inhibited by CPP-PNA, providing an effective antisense strategy for blocking −1 PRF signals.


The Journal of Infectious Diseases | 2007

Severe Acute Respiratory Syndrome Coronavirus Infection in Vaccinated Ferrets

Miriam E. R. Darnell; Ewan P. Plant; Hisayoshi Watanabe; Russ Byrum; Marisa St. Claire; Jerrold M. Ward; Deborah R. Taylor

Abstract Background. Development of vaccines to prevent severe acute respiratory syndrome (SARS) is limited by the lack of well-characterized animal models. Previous vaccine reports have noted robust neutralizing antibody and inflammatory responses in ferrets, resulting in enhanced hepatitis. Methods. We evaluated the humoral immune response and pathological end points in ferrets challenged with the Urbani strain of SARS-associated coronavirus (SARS-CoV) after having received formalin-inactivated whole-virus vaccine or mock vaccine. Results. Humoral responses were observed in ferrets that received an inactivated virus vaccine. Histopathological findings in lungs showed that infection of ferrets produced residual lung lesions not seen in both mock and vaccinated ferrets. SARS-CoV infection demonstrated bronchial and bronchiolar hyperplasia and perivascular cuffing in ferret lung tissue, as seen previously in infected mice. No evidence of enhanced disease was observed in any of the ferrets. All of the ferrets cleared the virus by day 14, 1 week earlier if vaccinated. Conclusions. The vaccine provided mild immune protection to the ferrets after challenge; however, there was no evidence of enhanced liver or lung disease induced by the inactivated whole-virus vaccine. The ferret may provide another useful model for evaluating SARS vaccine safety and efficacy.


Antiviral Chemistry & Chemotherapy | 2009

Characterization of Aurintricarboxylic Acid as a Potent Hepatitis C Virus Replicase Inhibitor

Ye Chen; Alain Bopda-Waffo; Amartya Basu; Ramalingam Krishnan; Erica Silberstein; Deborah R. Taylor; Tanaji T. Talele; Payal Arora; Neerja Kaushik-Basu

Background: Hepatitis C virus (HCV) NS5B is an essential component of the viral replication machinery and an important target for antiviral intervention. Aurintricarboxylic acid (ATA), a broad-spectrum antiviral agent, was evaluated and characterized for its anti-NS5B activity in vitro and in HCV replicon cells. Methods: Recombinant NS5B, HCV replicase and Huh-7 cells harbouring the subgenomic HCV replicon of genotype 1b were employed for biochemical and mechanistic investigations. Results: Analysis of ATA activity in vitro yielded equipotent inhibition of recombinant NS5B and HCV replicase in the submicromolar range (50% inhibition concentration [IC50] approximately 150 nM). Biochemical and mechanistic studies revealed a bimodal mechanism of ATA inhibition with characteristics of pyrophosphate mimics and non-nucleoside inhibitors. Molecular modelling and competition displacement studies were consistent with these parameters, suggesting that ATA might bind to the benzothiadiazine allosteric pocket 3 of NS5B or at its catalytic centre. Kinetic studies revealed a mixed mode of ATA inhibition with respect to both RNA and UTP substrates. Under single-cycle assay conditions, ATA inhibited HCV NS5B initiation and elongation from pre-bound RNA, but with ≥fivefold decreased potency compared with continuous polymerization conditions. The IC50 value of ATA for the native replicase complex was 145 nM. In HCV replicon cells, ATA treatment ablated HCV RNA replication (50% effective concentration =75 nM) with concomitant decrease in NS5B expression and no apparent cytotoxic effects. Conclusions: This study identified ATA as a potent anti-NS5B inhibitor and suggests that its unique mode of action might be exploited for structural refinement and development of novel anti-NS5B agents.

Collaboration


Dive into the Deborah R. Taylor's collaboration.

Top Co-Authors

Avatar

Erica Silberstein

United States Department of Health and Human Services

View shared research outputs
Top Co-Authors

Avatar

Ewan P. Plant

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar

Laura Ulitzky

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar

Stephen M. Feinstone

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar

Miriam E. R. Darnell

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar

Dougbeh-Chris Nyan

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar

Kathleen Mihalik

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar

Nicoleta Cehan

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar

Amy C. Sims

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Manuel M. Lafer

Center for Biologics Evaluation and Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge