Deborah R. Yoder-Himes
University of Louisville
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Deborah R. Yoder-Himes.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Deborah R. Yoder-Himes; Patrick Chain; Y. Zhu; Omri Wurtzel; Edward M. Rubin; James M. Tiedje; Rotem Sorek
Determining how an organism responds to its environment by altering gene expression is key to understanding its ecology. Here, we used RNA-seq to comprehensively and quantitatively assess the transcriptional response of the bacterial opportunistic cystic fibrosis (CF) pathogen and endemic soil dweller, Burkholderia cenocepacia, in conditions mimicking these 2 environments. By sequencing 762 million bases of cDNA from 2 closely related B. cenocepacia strains (one isolated from a CF patient and one from soil), we identified a number of potential virulence factors expressed under CF-like conditions, whereas genes whose protein products are involved in nitrogen scavenging and 2-component sensing were among those induced under soil-like conditions. Interestingly, 13 new putative noncoding RNAs were discovered using this technique, 12 of which are preferentially induced in the soil environment, suggesting that ncRNAs play an important role in survival in the soil. In addition, we detected a surprisingly large number of regulatory differences between the 2 strains, which may represent specific adaptations to the niches from which each strain was isolated, despite their high degree of DNA sequence similarity. Compared with the CF strain, the soil strain shows a stronger global gene expression response to its environment, which is consistent with the need for a more dynamic reaction to the heterogeneous conditions of soil.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Tao G. Dong; Brian T. Ho; Deborah R. Yoder-Himes; John J. Mekalanos
Type VI protein secretion system (T6SS) is important for bacterial competition through contact-dependent killing of competitors. T6SS delivers effectors to neighboring cells and corresponding antagonistic proteins confer immunity against effectors that are delivered by sister cells. Although T6SS has been found in more than 100 gram-negative bacteria including many important human pathogens, few T6SS-dependent effector and immunity proteins have been experimentally determined. Here we report a high-throughput approach using transposon mutagenesis and deep sequencing (Tn-seq) to identify T6SS immunity proteins in Vibrio cholerae. Saturating transposon mutagenesis was performed in wild type and a T6SS null mutant. Genes encoding immunity proteins were predicted to be essential in the wild type but dispensable in the T6SS mutant. By comparing the relative abundance of each transposon mutant in the mutant library using deep sequencing, we identified three immunity proteins that render protection against killing by T6SS predatory cells. We also identified their three cognate T6SS-secreted effectors and show these are important for not only antibacterial and antieukaryotic activities but also assembly of T6SS apparatus. The lipase and muramidase T6SS effectors identified in this study underscore the diversity of T6SS-secreted substrates and the distinctly different mechanisms that target these for secretion by the dynamic T6SS organelle.
PLOS Pathogens | 2012
Omri Wurtzel; Deborah R. Yoder-Himes; Kook Han; Ajai A. Dandekar; Sarit Edelheit; E. Peter Greenberg; Rotem Sorek; Stephen Lory
One of the hallmarks of opportunistic pathogens is their ability to adjust and respond to a wide range of environmental and host-associated conditions. The human pathogen Pseudomonas aeruginosa has an ability to thrive in a variety of hosts and cause a range of acute and chronic infections in individuals with impaired host defenses or cystic fibrosis. Here we report an in-depth transcriptional profiling of this organism when grown at host-related temperatures. Using RNA-seq of samples from P. aeruginosa grown at 28°C and 37°C we detected genes preferentially expressed at the body temperature of mammalian hosts, suggesting that they play a role during infection. These temperature-induced genes included the type III secretion system (T3SS) genes and effectors, as well as the genes responsible for phenazines biosynthesis. Using genome-wide transcription start site (TSS) mapping by RNA-seq we were able to accurately define the promoters and cis-acting RNA elements of many genes, and uncovered new genes and previously unrecognized non-coding RNAs directly controlled by the LasR quorum sensing regulator. Overall we identified 165 small RNAs and over 380 cis-antisense RNAs, some of which predicted to perform regulatory functions, and found that non-coding RNAs are preferentially localized in pathogenicity islands and horizontally transferred regions. Our work identifies regulatory features of P. aeruginosa genes whose products play a role in environmental adaption during infection and provides a reference transcriptional landscape for this pathogen.
PLOS Pathogens | 2013
David Skurnik; Damien Roux; Hugues Aschard; Vincent Cattoir; Deborah R. Yoder-Himes; Stephen Lory; Gerald B. Pier
High-throughput sequencing of transposon (Tn) libraries created within entire genomes identifies and quantifies the contribution of individual genes and operons to the fitness of organisms in different environments. We used insertion-sequencing (INSeq) to analyze the contribution to fitness of all non-essential genes in the chromosome of Pseudomonas aeruginosa strain PA14 based on a library of ∼300,000 individual Tn insertions. In vitro growth in LB provided a baseline for comparison with the survival of the Tn insertion strains following 6 days of colonization of the murine gastrointestinal tract as well as a comparison with Tn-inserts subsequently able to systemically disseminate to the spleen following induction of neutropenia. Sequencing was performed following DNA extraction from the recovered bacteria, digestion with the MmeI restriction enzyme that hydrolyzes DNA 16 bp away from the end of the Tn insert, and fractionation into oligonucleotides of 1,200–1,500 bp that were prepared for high-throughput sequencing. Changes in frequency of Tn inserts into the P. aeruginosa genome were used to quantify in vivo fitness resulting from loss of a gene. 636 genes had <10 sequencing reads in LB, thus defined as unable to grow in this medium. During in vivo infection there were major losses of strains with Tn inserts in almost all known virulence factors, as well as respiration, energy utilization, ion pumps, nutritional genes and prophages. Many new candidates for virulence factors were also identified. There were consistent changes in the recovery of Tn inserts in genes within most operons and Tn insertions into some genes enhanced in vivo fitness. Strikingly, 90% of the non-essential genes were required for in vivo survival following systemic dissemination during neutropenia. These experiments resulted in the identification of the P. aeruginosa strain PA14 genes necessary for optimal survival in the mucosal and systemic environments of a mammalian host.
Proceedings of the National Academy of Sciences of the United States of America | 2013
David Skurnik; Damien Roux; Vincent Cattoir; Olga Danilchanka; Xi Lu; Deborah R. Yoder-Himes; Kook Han; Thomas Guillard; Deming Jiang; Charlotte Gaultier; François Guérin; Hugues Aschard; Roland Leclercq; John J. Mekalanos; Stephen Lory; Gerald B. Pier
Significance It is thought antibiotic resistance carries a fitness cost and reduces microbial virulence. Using high-throughput sequencing analysis of a transposon insertion bank in Pseudomonas aeruginosa, we found enhanced fitness for in vivo mucosal colonization and systemic spread of strains with transposon insertions in the oprD gene. This conferred resistance to carbapenem antibiotics as well as enhanced resistance to killing at acidic pH and by normal human serum along with increased cytotoxicity against murine macrophages. RNA-sequencing analysis revealed that oprD deficiency led to transcriptional changes in numerous genes that may contribute to the enhanced in vivo fitness observed. Thus, if carbapenem resistance develops during antibiotic therapy of P. aeruginosa infections, it may lead to enhanced fitness and virulence in infected hosts. An important question regarding the biologic implications of antibiotic-resistant microbes is how resistance impacts the organism’s overall fitness and virulence. Currently it is generally thought that antibiotic resistance carries a fitness cost and reduces virulence. For the human pathogen Pseudomonas aeruginosa, treatment with carbapenem antibiotics is a mainstay of therapy that can lead to the emergence of resistance, often through the loss of the carbapenem entry channel OprD. Transposon insertion-site sequencing was used to analyze the fitness of 300,000 mutants of P. aeruginosa strain PA14 in a mouse model for gut colonization and systemic dissemination after induction of neutropenia. Transposon insertions in the oprD gene led not only to carbapenem resistance but also to a dramatic increase in mucosal colonization and dissemination to the spleen. These findings were confirmed in vivo with different oprD mutants of PA14 as well as with related pairs of carbapenem-susceptible and -resistant clinical isolates. Compared with OprD+ strains, those lacking OprD were more resistant to killing by acidic pH or normal human serum and had increased cytotoxicity against murine macrophages. RNA-sequencing analysis revealed that an oprD mutant showed dramatic changes in the transcription of genes that may contribute to the various phenotypic changes observed. The association between carbapenem resistance and enhanced survival of P. aeruginosa in infected murine hosts suggests that either drug resistance or host colonization can cause the emergence of more pathogenic, drug-resistant P. aeruginosa clones in a single genetic event.
Genome Research | 2012
Aya Kimelman; Asaf Levy; Hila Sberro; Shahar Kidron; Azita Leavitt; Gil Amitai; Deborah R. Yoder-Himes; Omri Wurtzel; Yiwen Zhu; Edward M. Rubin; Rotem Sorek
In the process of clone-based genome sequencing, initial assemblies frequently contain cloning gaps that can be resolved using cloning-independent methods, but the reason for their occurrence is largely unknown. By analyzing 9,328,693 sequencing clones from 393 microbial genomes, we systematically mapped more than 15,000 genes residing in cloning gaps and experimentally showed that their expression products are toxic to the Escherichia coli host. A subset of these toxic sequences was further evaluated through a series of functional assays exploring the mechanisms of their toxicity. Among these genes, our assays revealed novel toxins and restriction enzymes, and new classes of small, non-coding toxic RNAs that reproducibly inhibit E. coli growth. Further analyses also revealed abundant, short, toxic DNA fragments that were predicted to suppress E. coli growth by interacting with the replication initiator DnaA. Our results show that cloning gaps, once considered the result of technical problems, actually serve as a rich source for the discovery of biotechnologically valuable functions, and suggest new modes of antimicrobial interventions.
PLOS ONE | 2010
Deborah R. Yoder-Himes; Konstantinos T. Konstantinidis; James M. Tiedje
Background Burkholderia cenocepacia is an endemic soil dweller and emerging opportunistic pathogen in patients with cystic fibrosis (CF). The identification of virulence factors and potential therapeutic targets has been hampered by the genomic diversity within the species as many factors are not shared among the pathogenic members of the species. Methodology/Principal Findings In this study, global identification of putative virulence factors was performed by analyzing the transcriptome of two related strains of B. cenocepacia (one clinical, one environmental) under conditions mimicking cystic fibrosis sputum versus soil. Soil is a natural reservoir for this species; hence, genes induced under CF conditions relative to soil may represent adaptations that have occurred in clinical strains. Under CF conditions, several genes encoding proteins thought to be involved in virulence were induced and many new ones were identified. Our analysis, in combination with previous studies, reveals 458 strain-specific genes, 126 clinical-isolate-specific, and at least four species-specific genes that are induced under CF conditions. The chromosomal distribution of the induced genes was disproportionate to the size of the chromosome as genes expressed under soil conditions by both strains were more frequent on the second chromosome and those differentially regulated between strains were more frequent on the third chromosome. Conservation of these induced genes was established using the 11 available Bcc genome sequences to indicate whether potential therapeutic targets would be species-wide. Conclusions/Significance Comparative transcriptomics is a useful way to identify new potential virulence factors and therapeutic targets for pathogenic bacteria. We identified eight genes induced under CF conditions that were also conserved in the Bcc and may constitute particularly attractive therapeutic targets due to their signal sequence, predicted cellular location, and homology to known therapeutic targets.
PLOS ONE | 2012
Seungdae Oh; Sarah Buddenborg; Deborah R. Yoder-Himes; James M. Tiedje; Konstantinos T. Konstantinidis
Our understanding of the Escherichia genus is heavily biased toward pathogenic or commensal isolates from human or animal hosts. Recent studies have recovered Escherichia isolates that persist, and even grow, outside these hosts. Although the environmental isolates are typically phylogenetically distinct, they are highly related to and phenotypically indistinguishable from their human counterparts, including for the coliform test. To gain insights into the genomic diversity of Escherichia isolates from diverse habitats, including freshwater, soil, animal, and human sources, we carried out comparative DNA-DNA hybridizations using a multi-genome E. coli DNA microarray. The microarray was validated based on hybridizations with selected strains whose genome sequences were available and used to assess the frequency of microarray false positive and negative signals. Our results showed that human fecal isolates share two sets of genes (n>90) that are rarely found among environmental isolates, including genes presumably important for evading host immune mechanisms (e.g., a multi-drug transporter for acids and antimicrobials) and adhering to epithelial cells (e.g., hemolysin E and fimbrial-like adhesin protein). These results imply that environmental isolates are characterized by decreased ability to colonize host cells relative to human isolates. Our study also provides gene markers that can distinguish human isolates from those of warm-blooded animal and environmental origins, and thus can be used to more reliably assess fecal contamination in natural ecosystems.
Journal of Bacteriology | 2006
Deborah R. Yoder-Himes; Lee Kroos
The bacterium Myxococcus xanthus employs extracellular signals to coordinate aggregation and sporulation during multicellular development. Extracellular, contact-dependent signaling that involves the CsgA protein (called C-signaling) activates FruA, a putative response regulator that governs a branched signaling pathway inside cells. One branch regulates cell movement, leading to aggregation. The other branch regulates gene expression, leading to sporulation. C-signaling is required for full expression of most genes induced after 6 h into development, including the gene identified by Tn5 lac insertion Omega4400. To determine if FruA is a direct regulator of Omega4400 transcription, a combination of in vivo and in vitro experiments was performed. Omega4400 expression was abolished in a fruA mutant. The DNA-binding domain of FruA bound specifically to DNA upstream of the promoter -35 region in vitro. Mutations between bp -86 and -77 greatly reduced binding. One of these mutations had been shown previously to reduce Omega4400 expression in vivo and make it independent of C-signaling. For the first time, chromatin immunoprecipitation (ChIP) experiments were performed on M. xanthus. The ChIP experiments demonstrated that FruA is associated with the Omega4400 promoter region late in development, even in the absence of C-signaling. Based on these results, we propose that FruA directly activates Omega4400 transcription to a moderate level prior to C-signaling and, in response to C-signaling, binds near bp -80 and activates transcription to a higher level. Also, the highly localized effects of mutations between bp -86 and -77 on DNA binding in vitro, together with recently published footprints, allow us to predict a consensus binding site of GTCG/CGA/G for the FruA DNA-binding domain.
Frontiers in Cellular and Infection Microbiology | 2015
Maria G. Gutierrez; Deborah R. Yoder-Himes; Jonathan M. Warawa
Respiratory melioidosis is a disease presentation of the biodefense pathogen, Burkholderia pseudomallei, which is frequently associated with a lethal septicemic spread of the bacteria. We have recently developed an improved respiratory melioidosis model to study the pathogenesis of Burkholderia pseudomallei in the lung (intubation-mediated intratracheal [IMIT] inoculation), which more closely models descriptions of human melioidosis, including prominent septicemic spread from the lung and reduced involvement of the upper respiratory tract. We previously demonstrated that the Type 3 Secretion System cluster 3 (T3SS3) is a critical virulence determinant for B. pseudomallei when delivered directly into the lung. We decided to comprehensively identify all virulence determinants required for respiratory melioidosis using the Tn-seq phenotypic screen, as well as to investigate which virulence determinants are required for dissemination to the liver and spleen. While previous studies have used Tn-seq to identify essential genes for in vitro cultured B. pseudomallei, this represents the first study to use Tn-seq to identify genes required for in vivo fitness. Consistent with our previous findings, we identified T3SS3 as the largest genetic cluster required for fitness in the lung. Furthermore, we identified capsular polysaccharide and Type 6 Secretion System cluster 5 (T6SS5) as the two additional major genetic clusters facilitating respiratory melioidosis. Importantly, Tn-seq did not identify additional, novel large genetic systems supporting respiratory melioidosis, although these studies identified additional small gene clusters that may also play crucial roles in lung fitness. Interestingly, other previously identified virulence determinants do not appear to be required for lung fitness, such as lipopolysaccharide. The role of T3SS3, capsule, and T6SS5 in lung fitness was validated by competition studies, but only T3SS3 was found to be important for respiratory melioidosis when delivered as a single strain challenge, suggesting that competition studies may provide a higher resolution analysis of fitness factors in the lung. The use of Tn-seq phenotypic screening also provided key insights into the selective pressure encountered in the liver.