Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deborah Steplock is active.

Publication


Featured researches published by Deborah Steplock.


Journal of Clinical Investigation | 1995

Characterization of a protein cofactor that mediates protein kinase A regulation of the renal brush border membrane Na(+)-H+ exchanger.

Edward J. Weinman; Deborah Steplock; Yiping Wang; Shirish Shenolikar

Activation of cAMP-dependent protein kinase A inhibits the renal proximal tubule brush border membrane Na(+)-H+ exchanger by a process involving participation of a regulatory cofactor (NHE-RF) that is distinct from the transporter itself. Recent studies from this laboratory reported a partial amino acid sequence of this putative cofactor (Weinman, E. J., D. H. Steplock, and S. Shenolikar. 1993. J. Clin. Invest. 92:1781-1786). The present experiments detail the structure of the NHE-RF protein as determined from molecular cloning studies. A codon-biased oligonucleotide probe to a portion of the amino acid sequence of the putative cofactor was used to isolate a 1.9-kb cDNA from a rabbit renal library. The encoded protein is 358 amino acids in length and is rich in proline residues. Search of existing data bases indicates that NHE-RF is a unique protein. Using a reticulocyte lysate, the cDNA translated a product of approximately 44 kD, which was recognized by an affinity-purified polyclonal antibody to NHE-RF. Potential phosphorylation sites for protein kinase A are present. The mRNA for the protein is expressed in kidney, proximal small intestine, and liver. Reverse transcription/PCR studies in the kidney indicate the presence of mRNA for NHE-RF in several distinct nephron segments including the proximal tubule.


Journal of Clinical Investigation | 1993

CAMP-mediated inhibition of the renal brush border membrane Na+-H+ exchanger requires a dissociable phosphoprotein cofactor.

Edward J. Weinman; Deborah Steplock; Shirish Shenolikar

Prior studies have suggested that protein kinase A (PKA)-mediated inhibition of the rabbit renal brush border membrane (BBM) Na(+)-H+ exchanger involves a regulatory protein that is distinct from the transporter. This putative regulatory protein was purified by column chromatography and SDS-PAGE, and a partial primary amino acid sequence was determined. An affinity-purified polyclonal antibody to a synthetic peptide representing a sequence of the protein recognized a polypeptide of 55 kD in BBM but not in basolateral membrane. The antibody immunoprecipitated a PKA substrate of a similar molecular mass from detergent-solubilized BBM proteins. When assayed after reconstitution, PKA in the presence of ATP and Mg2+ did not inhibit Na(+)-H+ exchange transport in a fraction of solubilized BBM proteins eluting from an anion exchange column between 0.2 and 0.4 M NaCl (fraction B). Coreconstitution of fraction B with the immunoprecipitated 55-kD protein restored the inhibitory effect of PKA (change = 42%, P < 0.05). By contrast, Na(+)-H+ exchange transport in total solubilized BBM proteins was inhibited 25% (P < 0.05) by PKA, ATP, and Mg2+. This effect was abolished by immunodepletion of the cAMP regulatory protein (change = +5%, P = NS). These findings provide evidence that the regulation of renal BBM Na(+)-H+ exchange transport by PKA is affected by repletion and depletion of a specific protein. This suggests that PKA-mediated inhibition of the renal BBM Na(+)-H+ exchanger requires participation of a regulatory protein that is distinct from the transporter itself.


Journal of Biological Chemistry | 1999

cAMP-induced Phosphorylation and Inhibition of Na+/H+ Exchanger 3 (NHE3) Are Dependent on the Presence but Not the Phosphorylation of NHE Regulatory Factor

Mirza Zizak; Georg Lamprecht; Deborah Steplock; Nadeem Tariq; Shirish Shenolikar; Mark Donowitz; C. H. Chris Yun; Edward J. Weinman

The members of the regulatory factor (RF) gene family, Na+/H+ exchanger (NHE)-RF and NHE3 kinase A regulatory factor (E3KARP) are necessary for cAMP to inhibit the epithelial brush border NHE isoform 3 (NHE3). The mechanism of their action was studied using PS120 fibroblasts stably transfected with rabbit NHE3 and wild type rabbit NHE-RF or wild type human E3KARP. 8-Bromo-cAMP (8-Br-cAMP) had no effect on Na+/H+ exchange activity in cells expressing NHE3 alone. In contrast, in cells co-expressing NHE-RF, 8-Br-cAMP inhibited NHE3 by 39%. In vivo phosphorylation of NHE3 demonstrated that cAMP increased phosphorylation in two chymotrypsin-generated phosphopeptides of NHE3 in cells containing NHE-RF or E3KARP but not in cells lacking these proteins. The requirement for phosphorylation of NHE-RF in this cAMP-induced inhibition of NHE3 was examined by studying a mutant NHE-RF in which serines 287, 289, and 290 were mutated to alanines. Wild type NHE-RF was a phosphorylated protein under basal conditions, but treatment with 8-Br-cAMP did not alter its phosphorylation. Mutant NHE-RF was not phosphorylated either under basal conditions or after 8-Br-cAMP. 8-Br-cAMP inhibited NHE3 similarly in PS120/NHE3 cells containing wild type or mutant NHE-RF. NHE-RF and NHE3 co-precipitated and did so similarly with and without cAMP. Mutant NHE-RF also similarly immunoprecipitated NHE3 in the presence and absence of 8-Br-cAMP. This study shows that members of the regulatory factor gene family, NHE-RF and E3KARP, are necessary for cAMP inhibition of NHE3 by allowing NHE3 to be phosphorylated. This inhibition is not dependent on the phosphorylation of NHE-RF.


Journal of Clinical Investigation | 2007

Parathyroid hormone inhibits renal phosphate transport by phosphorylation of serine 77 of sodium-hydrogen exchanger regulatory factor–1

Edward J. Weinman; Rajat S. Biswas; Quihong Peng; Lily Shen; Christina L. Turner; Xiaofei E; Deborah Steplock; Shirish Shenolikar; Rochelle Cunningham

Parathyroid hormone (PTH), via activation of PKC and/or protein kinase A, inhibits renal proximal tubular phosphate reabsorption by facilitating the internalization of the major sodium-dependent phosphate transporter, Npt2a. Herein, we explore the hypothesis that the effect of PTH is mediated by phosphorylation of serine 77 (S77) of the first PDZ domain of the Npt2a-binding protein sodium-hydrogen exchanger regulatory factor-1 (NHERF-1). Using recombinant polypeptides representing PDZ I, S77 of NHERF-1 is phosphorylated by PKC but not PKA. When expressed in primate kidney epithelial cells (BSC-1 cells), however, activation of either protein kinase phosphorylates S77, suggesting that the phosphorylation of PDZ I by PKC and PKA proceeds by different biochemical pathways. PTH and other activators of PKC and PKA dissociate NHERF-1/Npt2a complexes, as assayed using quantitative coimmunoprecipitation, confocal microscopy, and sucrose density gradient ultracentrifugation in mice. Murine NHERF-1-/- renal proximal tubule cells infected with adenovirus-GFP-NHERF-1 containing an S77A mutation showed significantly increased phosphate transport compared with a phosphomimetic S77D mutation and were resistant to the inhibitory effect of PTH compared with cells infected with wild-type NHERF-1. These results indicate that PTH-mediated inhibition of renal phosphate transport involves phosphorylation of S77 of the NHERF-1 PDZ I domain and the dissociation of NHERF-1/Npt2a complexes.


Journal of Clinical Investigation | 1998

Structure-function of recombinant Na/H exchanger regulatory factor (NHE-RF).

Edward J. Weinman; Deborah Steplock; Karen Tate; Randy A. Hall; Robert F. Spurney; Shirish Shenolikar

Inhibition of the renal brush border membrane (BBM) Na/H exchanger by cAMP-dependent protein kinase, PKA, requires participation of a recently cloned regulatory cofactor, Na/H exchanger-regulatory factor (NHE-RF). As deduced from the cDNA of this 358-amino acid protein, amino acids 11-101 and amino acids 150-241 of the NHE-RF protein share 74% overall homology suggesting duplication of these PDZ containing domains. The serine residues at amino acid position 289 and 340 are considered to be the most likely sites for PKA mediated phosphorylation. To study the structure- function relation between NHE-RF and PKA mediated inhibition of the rabbit BBM Na/H exchanger, the effect of recombinant proteins representing full-length NHE-RF as well as truncated and mutant forms of NHE-RF were determined using a reconstitution assay. The reconstitution assay employed a fraction of rabbit BBM proteins that contains Na/H exchanger activity that is not regulated by PKA. NHE-RF in the presence of ATP and Mg but not PKA, inhibited Na/H exchange activity in a concentration-dependent manner. In the presence of PKA, there was a significant left shift in the dose-response relation such that 10(-12) M NHE-RF inhibited Na/H exchange transport by 30% in the presence but not in the absence of PKA. A recombinant polypeptide representing amino acids 1-151 (Domain I) did not affect Na/H exchange transport in the presence or absence of PKA. A polypeptide representing amino acids 149-358 (Domain II) in the presence of ATP and Mg but not PKA, inhibited Na/H exchange activity in a concentration-dependent manner. In the presence of PKA, there was a left shift in the dose-response relation. 10(-12) M of Domain II polypeptide inhibited transport by 18% in the presence but not in the absence of PKA. Mutation of serine residues 287, 289, and 290 to alanine did not affect the inhibitory effect in the absence of PKA but abolished the left shift in the dose-response relation elicited by PKA. Mutation of serine residues 339 and 340 to alanine were without effect on PKA dependent regulation of Na/H exchange transport. These studies indicate that NHE-RF inhibits basal rabbit renal BBM Na/H exchange activity-an effect which is augmented by PKA. The amino acid sequences in the polypeptide containing only the NH2-terminal PDZ domain of NHE-RF have no intrinsic activity as an inhibitor but appears to be required for the full-length NHE-RF to express its full inhibitory effect on the BBM Na/H exchanger. One or more of the serine residues at positions 287, 289, and/or 290 represent the critical PKA phosphorylation site(s) on the NHE-RF protein that mediates the physiologic effect of cAMP on the renal BBM Na/H exchanger.


FEBS Letters | 2003

NHERF-1 uniquely transduces the cAMP signals that inhibit sodium–hydrogen exchange in mouse renal apical membranes

Edward J. Weinman; Deborah Steplock; Shirish Shenolikar

Sodium–hydrogen exchanger regulatory factor isoform‐1 (NHERF‐1) and NHERF‐2 are two structurally related PDZ‐domain‐containing protein adapters that effectively transduce cyclic AMP (cAMP) signals that inhibit NHE3, the sodium–hydrogen exchanger isoform present at the apical surface of kidney and gut epithelia. The mouse renal proximal tubule expresses both NHERF isoforms, suggesting their redundant functions as regulators of renal electrolyte metabolism. To define the role of NHERF‐1 in the physiological control of NHE3, we analyzed NHE3 activity in isolated brush border membrane (BBM) preparations from renal proximal tubules of wild‐type (WT) and NHERF‐1 (−/−) mice. Basal Na+–H+ exchange was indistinguishable in BBMs from WT and NHERF‐1 (−/−) mice (0.96±0.08 and 0.95±0.10 nmol/mg protein/10 s, respectively). Activation of membrane bound cAMP‐dependent protein kinase (PKA) by cAMP inhibited NHE3 activity in WT BBMs (0.55±0.07 nmol/mg protein/10 s or 40±9%, P<0.01) but had no discernible effect on Na+–H+ exchange in the NHERF‐1 (−/−) BBM (0.97±0.07 nmol/mg protein/10 s; P=not significant). This was associated with a significant decrease in cAMP‐stimulated phosphorylation of NHE3 immunoprecipitated from solubilized NHERF‐1 (−/−) BBMs. As the protein levels for NHE3, NHERF‐2, PKA and ezrin were not changed in the NHERF‐1 (−/−) BBMs, the data suggest a unique role for NHERF‐1 in cAMP‐mediated inhibition of NHE3 activity in the renal proximal tubule of the mouse.


FEBS Letters | 2001

N-terminal PDZ domain is required for NHERF dimerization.

Shirish Shenolikar; Charles Minkoff; Deborah Steplock; Christine M. Evangelista; Min Zhi Liu; Edward J. Weinman

NHERF, a 55 kDa PDZ‐containing protein, binds receptors and ion transporters to mediate signal transduction at the plasma membrane. Recombinant NHERF demonstrated an apparent size of 150 kDa on gel filtration, which could be reduced to approximately 55 kDa by protein denaturing agents, consistent with the formation of NHERF dimers. Biosensor studies established the time‐ and concentration‐dependent dimerization of NHERF. Overlays of recombinant NHERF fragments suggested that NHERF dimerization was principally mediated by the N‐terminal PDZ‐I domain. In PS120 cells, reversible protein phosphorylation modulated NHERF dimerization and suggested a role for NHERF dimers in hormonal signaling.


Journal of Biological Chemistry | 2004

Defective Parathyroid Hormone Regulation of NHE3 Activity and Phosphate Adaptation in Cultured NHERF-1-/- Renal Proximal Tubule Cells

Rochelle Cunningham; Deborah Steplock; Fengying Wang; Huijun Huang; Xiaofei E; Shirish Shenolikar; Edward J. Weinman

The present experiments using primary cultures of renal proximal tubule cells derived from wild-type and NHERF-1 knockout animals examines the regulation of NHE3 by phenylthiohydantoin (PTH) and the regulation of phosphate transport in response to alterations in the media content of phosphate. Forskolin (34.8 ± 6.2%) and PTH (29.7 ± 1.8%) inhibited NHE3 activity in wild-type proximal tubule cells but neither forskolin (-3.2 ± 3.3%) nor PTH (-16.6 ± 8.1%) inhibited NHE3 activity in NHERF-1-/- cells. Using adenovirus-mediated gene transfer, expression of NHERF-1 in NHERF-1-/- proximal tubule cells restored the inhibitory response to forskolin (28.2 ± 3.0%) and PTH (33.2 ± 3.9%). Compared with high phosphate media, incubation of wild-type cells in low phosphate media resulted in a 36.0 ± 6.3% higher rate of sodium-dependent phosphate transport and a significant increase in the abundance of Npt2a and PDZK1. NHERF-1-/- cells, on the other hand, had lower rates of sodium-dependent phosphate uptake and low phosphate media did not stimulate phosphate transport. Npt2a expression was not affected by the phosphate content of the media in NHERF-1 null cells although low phosphate media up-regulated PDZK1 abundance. Primary cultures of mice proximal tubule cells retain selected regulatory pathways observed in intact kidneys. NHERF-1-/- proximal tubule cells demonstrate defective regulation of NHE3 by PTH and indicate that reintroduction of NHERF-1 repairs this defect. NHERF-1-/- cells also do not adapt to alterations in the phosphate content of the media indicating that the defect resides within the cells of the proximal tubule and is not dependent on systemic factors.


Journal of Biological Chemistry | 2007

Tissue-specific Regulation of Sodium/Proton Exchanger Isoform 3 Activity in Na+/H+ Exchanger Regulatory Factor 1 (NHERF1) Null Mice cAMP INHIBITION IS DIFFERENTIALLY DEPENDENT ON NHERF1 AND EXCHANGE PROTEIN DIRECTLY ACTIVATED BY cAMP IN ILEUM VERSUS PROXIMAL TUBULE

Rakhilya Murtazina; Olga Kovbasnjuk; Nicholas C. Zachos; Xuhang Li; Yueping Chen; Ann L. Hubbard; Boris M. Hogema; Deborah Steplock; Ursula Seidler; Kazi Mirajul Hoque; Chung Ming Tse; Hugo R. de Jonge; Edward J. Weinman; Mark Donowitz

The multi-PDZ domain containing protein Na+/H+ Exchanger Regulatory Factor 1 (NHERF1) binds to Na+/H+ exchanger 3 (NHE3) and is associated with the brush border (BB) membrane of murine kidney and small intestine. Although studies in BB isolated from kidney cortex of wild type and NHERF1-/- mice have shown that NHERF1 is necessary for cAMP inhibition of NHE3 activity, a role of NHERF1 in NHE3 regulation in small intestine and in intact kidney has not been established. Here a method using multi-photon microscopy with the pH-sensitive dye SNARF-4F (carboxyseminaphthorhodafluors-4F) to measure BB NHE3 activity in intact murine tissue and use it to examine the role of NHERF1 in regulation of NHE3 activity. NHE3 activity in wild type and NHERF1-/- ileum and wild type kidney cortex were inhibited by cAMP, whereas the cAMP effect was abolished in kidney cortex of NHERF1-/- mice. cAMP inhibition of NHE3 activity in these two tissues is mediated by different mechanisms. In ileum, a protein kinase A (PKA)-dependent mechanism accounts for all cAMP inhibition of NHE3 activity since the PKA antagonist H-89 abolished the inhibitory effect of cAMP. In kidney, both PKA-dependent and non-PKA-dependent mechanisms were involved, with the latter reproduced by the effect on an EPAC (exchange protein directly activated by cAMP) agonist (8-(4-chlorophenylthio)-2′O-Me-cAMP). In contrast, the EPAC agonist had no effect in proximal tubules in NHERF1-/- mice. These data suggest that in proximal tubule, NHERF1 is required for all cAMP inhibition of NHE3, which occurs through both EPAC-dependent and PKA-dependent mechanisms; in contrast, cAMP inhibits ileal NHE3 only by a PKA-dependent pathway, which is independent of NHERF1 and EPAC.


Journal of Biological Chemistry | 2007

Phosphorylation of PDZ1 Domain Attenuates NHERF-1 Binding to Cellular Targets

James W. Voltz; Matthew H. Brush; Suzanne Sikes; Deborah Steplock; Edward J. Weinman; Shirish Shenolikar

NHERF-1 (Na+-H+ exchanger regulatory factor 1, also known as EBP50 ezrin-binding protein of 50 kDa) is a phosphoprotein that assembles multiprotein complexes via two PDZ domains and a C-terminal ezrin-binding domain. Current work utilized metabolic labeling in cultured cells expressing wild type GFP-NHERF-1 to define the physiological importance of NHERF-1 phosphorylation. Treatment of cells with phosphatase inhibitors calyculin A and okadaic acid enhanced NHERF-1 phosphorylation and inhibited its dimerization. Eliminating C-terminal serines abolished the modulation of NHERF-1 dimerization by phosphatase inhibitors and identified the phosphorylation of the PDZ1 domain that attenuated its binding to physiological targets, including β2-adrenergic receptor, platelet-derived growth factor receptor, cystic fibrosis transmembrane conductance regulator, and sodium-phosphate cotransporter type IIa. The major covalent modification of PDZ1 was mapped to serine 77. Confocal microscopy of cultured cells suggested key roles for PDZ1 and ERM-binding domain in localizing NHERF-1 at the cell surface. The substitution S77A eliminated PDZ1 phosphorylation and increased NHERF-1 localization at the cell periphery. In contrast, S77D reduced NHERF-1 colocalization with cortical actin cytoskeleton. These data suggested that serine 77 phosphorylation played key role in modulating NHERF-1 association with plasma membrane targets and identified a novel mechanism by which PDZ1 phosphorylation may transduce hormonal signals to regulate the function of membrane proteins in epithelial tissues.

Collaboration


Dive into the Deborah Steplock's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shirish Shenolikar

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Donowitz

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

C. H. Chris Yun

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jie Liu

University of Maryland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chung Ming Tse

Johns Hopkins University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge