Deborah Wall-Palmer
Plymouth State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Deborah Wall-Palmer.
Geochemistry Geophysics Geosystems | 2012
Michael Manga; Matthew J. Hornbach; Anne Le Friant; Osamu Ishizuka; Nicole A. Stroncik; Tatsuya Adachi; Mohammed Aljahdali; Georges Boudon; Christoph Breitkreuz; Andrew Fraass; Akihiko Fujinawa; Robert G. Hatfield; Martin Jutzeler; Kyoko S. Kataoka; Sara Lafuerza; Fukashi Maeno; Michael Martinez-Colon; Molly McCanta; Sally Morgan; Martin R. Palmer; Takeshi Saito; Angela L. Slagle; Adam J. Stinton; K. S. V. Subramanyam; Yoshihiko Tamura; Peter J. Talling; Benoît Villemant; Deborah Wall-Palmer; Fei Wang
Using temperature gradients measured in 10 holes at 6 sites, we generate the first high fidelity heat flow measurements from Integrated Ocean Drilling Program drill holes across the northern and central Lesser Antilles arc and back arc Grenada basin. The implied heat flow, after correcting for bathymetry and sedimentation effects, ranges from about 0.1 W/m2 on the crest of the arc, midway between the volcanic islands of Montserrat and Guadeloupe, to 15 km from the crest in the back arc direction. Combined with previous measurements, we find that the magnitude and spatial pattern of heat flow are similar to those at continental arcs. The heat flow in the Grenada basin to the west of the active arc is 0.06 W/m2, a factor of 2 lower than that found in the previous and most recent study. There is no thermal evidence for significant shallow fluid advection at any of these sites. Present-day volcanism is confined to the region with the highest heat flow.
Science & Engineering Faculty | 2015
A. Le Friant; Osamu Ishizuka; Georges Boudon; Martin R. Palmer; Peter J. Talling; B. Villemant; Tatsuya Adachi; Mohammed Aljahdali; Christoph Breitkreuz; Morgane Brunet; Benoit Caron; Maya Coussens; Christine Deplus; Daisuke Endo; Nathalie Feuillet; A.J. Fraas; Akihiko Fujinawa; Malcolm B. Hart; Robert G. Hatfield; Matt Hornbach; Martin Jutzeler; Kyoko S. Kataoka; J-C. Komorowski; Elodie Lebas; Sara Lafuerza; Fukashi Maeno; Michael Manga; Michael Martinez-Colon; Molly McCanta; Sally Morgan
IODP Expedition 340 successfully drilled a series of sites offshore Montserrat, Martinique and Dominica in the Lesser Antilles from March to April 2012. These are among the few drill sites gathered around volcanic islands, and the first scientific drilling of large and likely tsunamigenic volcanic island-arc landslide deposits. These cores provide evidence and tests of previous hypotheses for the composition and origin of those deposits. Sites U1394, U1399, and U1400 that penetrated landslide deposits recovered exclusively seafloor sediment, comprising mainly turbidites and hemipelagic deposits, and lacked debris avalanche deposits. This supports the concepts that i/ volcanic debris avalanches tend to stop at the slope break, and ii/ widespread and voluminous failures of preexisting low-gradient seafloor sediment can be triggered by initial emplacement of material from the volcano. Offshore Martinique (U1399 and 1400), the landslide deposits comprised blocks of parallel strata that were tilted or microfaulted, sometimes separated by intervals of homogenized sediment (intense shearing), while Site U1394 offshore Montserrat penetrated a flat-lying block of intact strata. The most likely mechanism for generating these large-scale seafloor sediment failures appears to be propagation of a decollement from proximal areas loaded and incised by a volcanic debris avalanche. These results have implications for the magnitude of tsunami generation. Under some conditions, volcanic island landslide deposits composed of mainly seafloor sediment will tend to form smaller magnitude tsunamis than equivalent volumes of subaerial block-rich mass flows rapidly entering water. Expedition 340 also successfully drilled sites to access the undisturbed record of eruption fallout layers intercalated with marine sediment which provide an outstanding high-resolution data set to analyze eruption and landslides cycles, improve understanding of magmatic evolution as well as offshore sedimentation processes.
Geochemistry Geophysics Geosystems | 2014
Deborah Wall-Palmer; Maya Coussens; Peter J. Talling; Martin Jutzeler; Michael Cassidy; Isabelle Marchant; Martin R. Palmer; S.F.L. Watt; Christopher W. Smart; Jodie K. Fisher; Malcolm B. Hart; Andrew Fraass; J. Trofimovs; Anne Le Friant; Osamu Ishizuka; Tatsuya Adachi; Mohammed Aljahdali; Georges Boudon; Christoph Breitkreuz; Daisuke Endo; Akihiko Fujinawa; Robert G. Hatfield; Matthew J. Hornbach; Kyoko S. Kataoka; Sara Lafuerza; Fukashi Maeno; Michael Manga; Michael Martinez-Colon; Molly McCanta; Sally Morgan
Marine sediments around volcanic islands contain an archive of volcaniclastic deposits, which can be used to reconstruct the volcanic history of an area. Such records hold many advantages over often incomplete terrestrial data sets. This includes the potential for precise and continuous dating of intervening sediment packages, which allow a correlatable and temporally constrained stratigraphic framework to be constructed across multiple marine sediment cores. Here we discuss a marine record of eruptive and mass-wasting events spanning ∼250 ka offshore of Montserrat, using new data from IODP Expedition 340, as well as previously collected cores. By using a combination of high-resolution oxygen isotope stratigraphy, AMS radiocarbon dating, biostratigraphy of foraminifera and calcareous nannofossils, and clast componentry, we identify five major events at Soufriere Hills volcano since 250 ka. Lateral correlations of these events across sediment cores collected offshore of the south and south west of Montserrat have improved our understanding of the timing, extent and associations between events in this area. Correlations reveal that powerful and potentially erosive density-currents traveled at least 33 km offshore and demonstrate that marine deposits, produced by eruption-fed and mass-wasting events on volcanic islands, are heterogeneous in their spatial distribution. Thus, multiple drilling/coring sites are needed to reconstruct the full chronostratigraphy of volcanic islands. This multidisciplinary study will be vital to interpreting the chaotic records of submarine landslides at other sites drilled during Expedition 340 and provides a framework that can be applied to the stratigraphic analysis of sediments surrounding other volcanic islands.
Geochemistry Geophysics Geosystems | 2016
Maya Coussens; Deborah Wall-Palmer; Peter J. Talling; S.F.L. Watt; Michael Cassidy; Martin Jutzeler; Michael A. Clare; James E. Hunt; Michael Manga; Thomas M. Gernon; Martin R. Palmer; Stuart J. Hatter; Georges Boudon; Daisuke Endo; Akihiko Fujinawa; Robert G. Hatfield; Matthew J. Hornbach; Osamu Ishizuka; Kyoko S. Kataoka; Anne Le Friant; Fukashi Maeno; Molly McCanta; Adam J. Stinton
Hole U1395B, drilled southeast of Montserrat during Integrated Ocean Drilling Program Expedition 340, provides a long (>1 Ma) and detailed record of eruptive and mass-wasting events (>130 discrete events). This record can be used to explore the temporal evolution in volcanic activity and landslides at an arc volcano. Analysis of tephra fall and volcaniclastic turbidite deposits in the drill cores reveals three heightened periods of volcanic activity on the island of Montserrat (?930 ka to ?900 ka, ?810 ka to ?760 ka, and ?190 ka to ?120 ka) that coincide with periods of increased volcano instability and mass-wasting. The youngest of these periods marks the peak in activity at the Soufriere Hills volcano. The largest flank collapse of this volcano (?130 ka) occurred towards the end of this period, and two younger landslides also occurred during a period of relatively elevated volcanism. These three landslides represent the only large (>0.3 km3) flank collapses of the Soufriere Hills edifice, and their timing also coincides with periods of rapid sea-level rise (>5 m/ka). Available age data from other island arc volcanoes suggests a general correlation between the timing of large landslides and periods of rapid sea-level rise, but this is not observed for volcanoes in intra-plate ocean settings. We thus infer that rapid sea-level rise may modulate the timing of collapse at island arc volcanoes, but not in larger ocean-island settings.
Geochemistry Geophysics Geosystems | 2015
S.F.L. Watt; Martin Jutzeler; Peter J. Talling; Steven Carey; R. S. J. Sparks; M. Tucker; Adam J. Stinton; Jodie K. Fisher; Deborah Wall-Palmer; Veit Hühnerbach; Steven Grahame Moreton
Submarine landslide deposits have been mapped around many volcanic islands, but interpretations of their structure, composition, and emplacement are hindered by the challenges of investigating deposits directly. Here we report on detailed observations of four landslide deposits around Montserrat collected by Remotely Operated Vehicles, integrating direct imagery and sampling with sediment core and geophysical data. These complementary approaches enable a more comprehensive view of large-scale mass-wasting processes around island-arc volcanoes than has been achievable previously. The most recent landslide occurred at 11.5–14 ka (Deposit 1; 1.7 km3) and formed a radially spreading hummocky deposit that is morphologically similar to many subaerial debris-avalanche deposits. Hummocks comprise angular lava and hydrothermally altered fragments, implying a deep-seated, central subaerial collapse, inferred to have removed a major proportion of lavas from an eruptive period that now has little representation in the subaerial volcanic record. A larger landslide (Deposit 2; 10 km3) occurred at ∼130 ka and transported intact fragments of the volcanic edifice, up to 900 m across and over 100 m high. These fragments were rafted within the landslide, and are best exposed near the margins of the deposit. The largest block preserves a primary stratigraphy of subaerial volcanic breccias, of which the lower parts are encased in hemipelagic mud eroded from the seafloor. Landslide deposits south of Montserrat (Deposits 3 and 5) indicate the wide variety of debris-avalanche source lithologies around volcanic islands. Deposit 5 originated on the shallow submerged shelf, rather than the terrestrial volcanic edifice, and is dominated by carbonate debris.
ZooKeys | 2016
Deborah Wall-Palmer; Alice K. Burridge; Katja T. C. A. Peijnenburg
Abstract The Atlantidae (shelled heteropods) is a family of microscopic aragonite shelled holoplanktonic gastropods with a wide biogeographical distribution in tropical, sub-tropical and temperate waters. The aragonite shell and surface ocean habitat of the atlantids makes them particularly susceptible to ocean acidification and ocean warming, and atlantids are likely to be useful indicators of these changes. However, we still lack fundamental information on their taxonomy and biogeography, which is essential for monitoring the effects of a changing ocean. Integrated morphological and molecular approaches to taxonomy have been employed to improve the assessment of species boundaries, which give a more accurate picture of species distributions. Here a new species of atlantid heteropod is described based on shell morphology, DNA barcoding of the Cytochrome Oxidase I gene, and biogeography. All specimens of Atlanta ariejansseni sp. n. were collected from the Southern Subtropical Convergence Zone of the Atlantic and Indo-Pacific oceans suggesting that this species has a very narrow latitudinal distribution (37–48°S). Atlanta ariejansseni sp. n. was found to be relatively abundant (up to 2.3 specimens per 1000 m3 water) within this narrow latitudinal range, implying that this species has adapted to the specific conditions of the Southern Subtropical Convergence Zone and has a high tolerance to the varying ocean parameters in this region.
Journal of Geophysical Research | 2015
Matthew J. Hornbach; Michael Manga; Michael Genecov; Robert Valdez; Peter Miller; Demian M. Saffer; Esther Adelstein; Sara Lafuerza; Tatsuya Adachi; Christoph Breitkreuz; Martin Jutzeler; Anne Le Friant; Osamu Ishizuka; Sally Morgan; Angela L. Slagle; Peter J. Talling; Andrew Fraass; S.F.L. Watt; Nicole A. Stroncik; Mohammed Aljahdali; Georges Boudon; Akihiko Fujinawa; Robert G. Hatfield; Kyoko S. Kataoka; Fukashi Maeno; Michael Martinez-Colon; Molly McCanta; Martin R. Palmer; Adam J. Stinton; K. S. V. Subramanyam
Recent studies hypothesize that some submarine slides fail via pressure-driven slow-slip deformation. To test this hypothesis, this study derives pore pressures in failed and adjacent unfailed deep marine sediments by integrating rock physics models, physical property measurements on recovered sediment core, and wireline logs. Two drill sites (U1394 and U1399) drilled through interpreted slide debris; a third (U1395) drilled into normal marine sediment. Near-hydrostatic fluid pressure exists in sediments at site U1395. In contrast, results at both sites U1394 and U1399 indicate elevated pore fluid pressures in some sediment. We suggest that high pore pressure at the base of a submarine slide deposit at site U1394 results from slide shearing. High pore pressure exists throughout much of site U1399, and Mohr circle analysis suggests that only slight changes in the stress regime will trigger motion. Consolidation tests and permeability measurements indicate moderately low (~10−16–10−17 m2) permeability and overconsolidation in fine-grained slide debris, implying that these sediments act as seals. Three mechanisms, in isolation or in combination, may produce the observed elevated pore fluid pressures at site U1399: (1) rapid sedimentation, (2) lateral fluid flow, and (3) shearing that causes sediments to contract, increasing pore pressure. Our preferred hypothesis is this third mechanism because it explains both elevated fluid pressure and sediment overconsolidation without requiring high sedimentation rates. Our combined analysis of subsurface pore pressures, drilling data, and regional seismic images indicates that slope failure offshore Martinique is perhaps an ongoing, creep-like process where small stress changes trigger motion.
Progress in Oceanography | 2017
Deborah Wall-Palmer; Alice K. Burridge; Erica Goetze; Frank R. Stokvis; Arie W. Janssen; Lisette Mekkes; María Moreno-Alcántara; Nina Bednaršek; Tom Schiøtte; Martin V. Sørensen; Christopher W. Smart; Katja T. C. A. Peijnenburg
Highlights • We present a global biogeography and mtCO1 phylogeny for all atlantid morphospecies.• An updated biogeography for all morphospecies is constructed from museum collections.• Phylogeny of 437 new and 52 published sequences revealed 33 clades, 10 that are new.• Some new clades have unique morphological characters and may represent new species.• New clades have distinct distributions, suggesting narrow environmental tolerances.
Marine Geology | 2011
Deborah Wall-Palmer; Morgan T. Jones; Malcolm B. Hart; Jodie K. Fisher; Christopher W. Smart; Deborah J. Hembury; Martin R. Palmer; Gary R. Fones
Biogeosciences | 2012
Deborah Wall-Palmer; Malcolm B. Hart; Christopher W. Smart; R. S. J. Sparks; A. Le Friant; Georges Boudon; Christine Deplus; Jean-Christophe Komorowski
Collaboration
Dive into the Deborah Wall-Palmer's collaboration.
National Institute of Advanced Industrial Science and Technology
View shared research outputs