Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Debra A. Brock is active.

Publication


Featured researches published by Debra A. Brock.


Nature | 2011

Primitive agriculture in a social amoeba.

Debra A. Brock; Tracy E. Douglas; David C. Queller; Joan E. Strassmann

Agriculture has been a large part of the ecological success of humans. A handful of animals, notably the fungus-growing ants, termites and ambrosia beetles, have advanced agriculture that involves dispersal and seeding of food propagules, cultivation of the crop and sustainable harvesting. More primitive examples, which could be called husbandry because they involve fewer adaptations, include marine snails farming intertidal fungi and damselfish farming algae. Recent work has shown that microorganisms are surprisingly like animals in having sophisticated behaviours such as cooperation, communication and recognition, as well as many kinds of symbiosis. Here we show that the social amoeba Dictyostelium discoideum has a primitive farming symbiosis that includes dispersal and prudent harvesting of the crop. About one-third of wild-collected clones engage in husbandry of bacteria. Instead of consuming all bacteria in their patch, they stop feeding early and incorporate bacteria into their fruiting bodies. They then carry bacteria during spore dispersal and can seed a new food crop, which is a major advantage if edible bacteria are lacking at the new site. However, if they arrive at sites already containing appropriate bacteria, the costs of early feeding cessation are not compensated for, which may account for the dichotomous nature of this farming symbiosis. The striking convergent evolution between bacterial husbandry in social amoebas and fungus farming in social insects makes sense because multigenerational benefits of farming go to already established kin groups.


Development | 2005

A secreted factor represses cell proliferation in Dictyostelium.

Debra A. Brock

Many cells appear to secrete factors called chalones that limit their proliferation, but in most cases the factors have not been identified. We found that growing Dictyostelium cells secrete a 60 kDa protein called AprA for autocrine proliferation repressor. AprA has similarity to putative bacterial proteins of unknown function. Compared with wild-type cells, aprA-null cells proliferate faster, while AprA overexpressing cells proliferate slower. Growing wild-type cells secrete a factor that inhibits the proliferation of wild-type and aprA- cells; this activity is not secreted by aprA- cells. AprA purified by immunoprecipitation also slows the proliferation of wild-type and aprA- cells. Compared with wild type, there is a higher percentage of multinucleate cells in the aprA- population, and when starved, aprA- cells form abnormal structures that contain fewer spores. AprA may thus decrease the number of multinucleate cells and increase spore production. Together, the data suggest that AprA functions as part of a Dictyostelium chalone.


Proceedings of the National Academy of Sciences of the United States of America | 2013

A bacterial symbiont is converted from an inedible producer of beneficial molecules into food by a single mutation in the gacA gene

Pierre Stallforth; Debra A. Brock; Xiangjun Tian; David C. Queller; Joan E. Strassmann; Jon Clardy

Stable multipartite mutualistic associations require that all partners benefit. We show that a single mutational step is sufficient to turn a symbiotic bacterium from an inedible but host-beneficial secondary metabolite producer into a host food source. The bacteria’s host is a “farmer” clone of the social amoeba Dictyostelium discoideum that carries and disperses bacteria during its spore stage. Associated with the farmer are two strains of Pseudomonas fluorescens, only one of which serves as a food source. The other strain produces diffusible small molecules: pyrrolnitrin, a known antifungal agent, and a chromene that potently enhances the farmer’s spore production and depresses a nonfarmer’s spore production. Genome sequence and phylogenetic analyses identify a derived point mutation in the food strain that generates a premature stop codon in a global activator (gacA), encoding the response regulator of a two-component regulatory system. Generation of a knockout mutant of this regulatory gene in the nonfood bacterial strain altered its secondary metabolite profile to match that of the food strain, and also, independently, converted it into a food source. These results suggest that a single mutation in an inedible ancestral strain that served a protective role converted it to a “domesticated” food source.


Journal of Cell Science | 2008

The secreted Dictyostelium protein CfaD is a chalone

Deenadayalan Bakthavatsalam; Debra A. Brock; N. Neda Nikravan; Kevin D. Houston; R. Diane Hatton

Dictyostelium discoideum cells secrete CfaD, a protein that is similar to cathepsin proteases. Cells that lack cfaD proliferate faster and reach a higher stationary-phase density than wild-type cells, whereas cells that overexpress CfaD proliferate slowly and reach the stationary phase when at a low density. On a per-nucleus basis, CfaD affects proliferation but not growth. The drawback of not having CfaD is a reduced spore viability. Recombinant CfaD has no detectable protease activity but, when added to cells, inhibits the proliferation of wild-type and cfaD– cells. The secreted protein AprA also inhibits proliferation. AprA is necessary for the effect of CfaD on proliferation. Molecular-sieve chromatography indicates that in conditioned growth medium, the 60 kDa CfaD is part of a ∼150 kDa complex, and both chromatography and pull-down assays suggest that CfaD interacts with AprA. These results suggest that two interacting proteins may function together as a chalone signal in a negative feedback loop that slows Dictyostelium cell proliferation.


Journal of Biological Chemistry | 2002

Cells Respond to and Bind Countin, a Component of a Multisubunit Cell Number Counting Factor

Tong Gao; Karen Ehrenman; Lei Tang; Matthias Leippe; Debra A. Brock

In Dictyostelium discoideum counting factor (CF), a secreted ∼450-kDa complex of polypeptides, inhibits group and fruiting body size. When the gene encoding countin (a component of CF) was disrupted, cells formed large groups. We find that recombinant countin causes developing cells to form small groups, with an EC50 of ∼3 ng/ml, and affects cAMP signal transduction in the same manner as semipurified CF. Recombinant countin increases cell motility, decreases cell-cell adhesion, and regulates gene expression in a manner similar to the effect of CF. However, countin does not decrease adhesion or group size to the extent that semipurified CF does. A 1-min exposure of developing cells to countin causes an increase in F-actin polymerization and myosin phosphorylation and a decrease in myosin polymerization, suggesting that countin activates a rapid signal transduction pathway. 125I-Labeled countin has countin bioactivity, and binding experiments suggest that vegetative and developing cells have ∼53 cell-surface sites that bind countin with a K D of ∼1.5 ng/ml or 60 pm. We hypothesize that countin regulates cell development through the same pathway as CF and that other proteins within the complex may modify the activity of countin and/or have independent size-regulating activities.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Burkholderia bacteria infectiously induce the proto-farming symbiosis of Dictyostelium amoebae and food bacteria

Susanne DiSalvo; Tamara S. Haselkorn; Usman Bashir; Daniela Jimenez; Debra A. Brock; David C. Queller; Joan E. Strassmann

Significance Symbionts can provide hosts with many advantages including defensive capabilities and novel nutrients. However, symbionts may begin as pathogens that only subsequently become beneficial. In the Dictyostelium discoideum farming symbiosis some amoebas stably associate with bacterial partners. We demonstrate that amoeba-associated Burkholderia can initiate a farming symbiosis with naive amoeba hosts. Burkholderia decreases amoeba spore productivity in food-rich conditions but, because of the induction of bacterial food carriage, sometimes increases spore productivity in food-scarce conditions. Detrimental effects of Burkholderia colonization differ among Burkholderia genotypes and, in some cases, between new and old amoeba hosts, suggesting some coevolution within the association. These results suggest that Burkholderia exerts both pathogenic and mutualistic effects on its host in conditionally dependent ways. Symbiotic associations can allow an organism to acquire novel traits by accessing the genetic repertoire of its partner. In the Dictyostelium discoideum farming symbiosis, certain amoebas (termed “farmers”) stably associate with bacterial partners. Farmers can suffer a reproductive cost but also gain beneficial capabilities, such as carriage of bacterial food (proto-farming) and defense against competitors. Farming status previously has been attributed to amoeba genotype, but the role of bacterial partners in its induction has not been examined. Here, we explore the role of bacterial associates in the initiation, maintenance, and phenotypic effects of the farming symbiosis. We demonstrate that two clades of farmer-associated Burkholderia isolates colonize D. discoideum nonfarmers and infectiously endow them with farmer-like characteristics, indicating that Burkholderia symbionts are a major driver of the farming phenomenon. Under food-rich conditions, Burkholderia-colonized amoebas produce fewer spores than uncolonized counterparts, with the severity of this reduction being dependent on the Burkholderia colonizer. However, the induction of food carriage by Burkholderia colonization may be considered a conditionally adaptive trait because it can confer an advantage to the amoeba host when grown in food-limiting conditions. We observed Burkholderia inside and outside colonized D. discoideum spores after fruiting body formation; this observation, together with the ability of Burkholderia to colonize new amoebas, suggests a mixed mode of symbiont transmission. These results change our understanding of the D. discoideum farming symbiosis by establishing that the bacterial partner, Burkholderia, is an important causative agent of the farming phenomenon.


Eukaryotic Cell | 2003

CF45-1, a secreted protein which participates in Dictyostelium group size regulation.

Debra A. Brock; R. Diane Hatton; Dan-Victor Giurgiutiu; Brenton Scott; Wonhee Jang; Robin R. Ammann

ABSTRACT Developing Dictyostelium cells aggregate to form fruiting bodies containing typically 2 × 104 cells. To prevent the formation of an excessively large fruiting body, streams of aggregating cells break up into groups if there are too many cells. The breakup is regulated by a secreted complex of polypeptides called counting factor (CF). Countin and CF50 are two of the components of CF. Disrupting the expression of either of these proteins results in cells secreting very little detectable CF activity, and as a result, aggregation streams remain intact and form large fruiting bodies, which invariably collapse. We find that disrupting the gene encoding a third protein present in crude CF, CF45-1, also results in the formation of large groups when cells are grown with bacteria on agar plates and then starve. However, unlike countin− and cf50− cells, cf45-1− cells sometimes form smaller groups than wild-type cells when the cells are starved on filter pads. The predicted amino acid sequence of CF45-1 has some similarity to that of lysozyme, but recombinant CF45-1 has no detectable lysozyme activity. In the exudates from starved cells, CF45-1 is present in a ∼450-kDa fraction that also contains countin and CF50, suggesting that it is part of a complex. Recombinant CF45-1 decreases group size in colonies of cf45-1− cells with a 50% effective concentration (EC50) of ∼8 ng/ml and in colonies of wild-type and cf50− cells with an EC50 of ∼40 ng/ml. Like countin− and cf50− cells, cf45-1− cells have high levels of cytosolic glucose, high cell-cell adhesion, and low cell motility. Together, the data suggest that CF45-1 participates in group size regulation in Dictyostelium.


Eukaryotic Cell | 2006

A 60-Kilodalton Protein Component of the Counting Factor Complex Regulates Group Size in Dictyostelium discoideum

Debra A. Brock; Wouter N. van Egmond; Yousif Shamoo; R. Diane Hatton

ABSTRACT Much remains to be understood about how a group of cells or a tissue senses and regulates its size. Dictyostelium discoideum cells sense and regulate the size of groups and fruiting bodies using a secreted 450-kDa complex of proteins called counting factor (CF). Low levels of CF result in large groups, and high levels of CF result in small groups. We previously found three components of CF (D. A. Brock and R. H. Gomer, Genes Dev. 13:1960-1969, 1999; D. A. Brock, R. D. Hatton, D.-V. Giurgiutiu, B. Scott, R. Ammann, and R. H. Gomer, Development 129:3657-3668, 2002; and D. A. Brock, R. D. Hatton, D.-V. Giurgiutiu, B. Scott, W. Jang, R. Ammann, and R. H. Gomer, Eukaryot. Cell 2:788-797, 2003). We describe here a fourth component, CF60. CF60 has similarity to acid phosphatases, although it has very little, if any, acid phosphatase activity. CF60 is secreted by starving cells and is lost from the 450-kDa CF when a different CF component, CF50, is absent. Although we were unable to obtain cells lacking CF60, decreasing CF60 levels by antisense resulted in large groups, and overexpressing CF60 resulted in small groups. When added to wild-type cells, conditioned starvation medium from CF60 overexpressor cells as well as recombinant CF60 caused the formation of small groups. The ability of recombinant CF60 to decrease group size did not require the presence of the CF component CF45-1 or countin but did require the presence of CF50. Recombinant CF60 does not have acid phosphatase activity, indicating that the CF60 bioactivity is not due to a phosphatase activity. Together, the data suggest that CF60 is a component of CF, and thus this secreted signal has four different protein components.


Journal of Biological Chemistry | 2003

Two components of a secreted cell number-counting factor bind to cells and have opposing effects on cAMP signal transduction in dictyostelium

Debra A. Brock; Karen Ehrenman; Robin R. Ammann; Yitai Tang

A secreted 450-kDa complex of proteins called counting factor (CF) is part of a negative feedback loop that regulates the size of the groups formed by developing Dictyostelium cells. Two components of CF are countin and CF50. Both recombinant countin and recombinant CF50 decrease group size in Dictyostelium. countin- cells have a decreased cAMP-stimulated cAMP pulse, whereas recombinant countin potentiates the cAMP pulse. We find that cf50- cells have an increased cAMP pulse, whereas recombinant CF50 decreases the cAMP pulse, suggesting that countin and CF50 have opposite effects on cAMP signal transduction. In addition, countin and CF50 have opposite effects on cAMP-stimulated Erk2 activation. However, like recombinant countin, recombinant CF50 increases cell motility. We previously found that cells bind recombinant countin with a Hill coefficient of ∼2, a KH of 60 pm, and ∼53 sites/cell. We find here that cells also bind 125I-recombinant CF50, with a Hill coefficient of ∼2, a KH of ∼15 ng/ml (490 pm), and ∼56 sites/cell. Countin and CF50 require each others presence to affect group size, but the presence of countin is not necessary for CF50 to bind to cells, and CF50 is not necessary for countin to bind to cells. Our working hypothesis is that a signal transduction pathway activated by countin binding to cells modulates a signal transduction pathway activated by CF50 binding to cells and vice versa and that these two pathways can be distinguished by their effects on cAMP signal transduction.


BMC Evolutionary Biology | 2010

Cheating does not explain selective differences at high and low relatedness in a social amoeba

Gerda Saxer; Debra A. Brock; David C. Queller; Joan E. Strassmann

BackgroundAltruism can be favored by high relatedness among interactants. We tested the effect of relatedness in experimental populations of the social amoeba Dictyostelium discoideum, where altruism occurs in a starvation-induced social stage when some amoebae die to form a stalk that lifts the fertile spores above the soil facilitating dispersal. The single cells that aggregate during the social stage can be genetically diverse, which can lead to conflict over spore and stalk allocation. We mixed eight genetically distinct wild isolates and maintained twelve replicated populations at a high and a low relatedness treatment. After one and ten social generations we assessed the strain composition of the populations. We expected that some strains would be out-competed in both treatments. In addition, we expected that low relatedness might allow the persistence of social cheaters as it provides opportunity to exploit other strains.ResultsWe found that at high relatedness a single clone prevailed in all twelve populations. At low relatedness three clones predominated in all twelve populations. Interestingly, exploitation of some clones by others in the social stage did not explain the results. When we mixed each winner against the pool of five losers, the winner did not prevail in the spores because all contributed fairly to the stalk and spores. Furthermore, the dominant clone at high-relatedness was not cheated by the other two that persisted at low relatedness. A combination of high spore production and short unicellular stage most successfully explained the three successful clones at low relatedness, but not why one of them fared better at high relatedness. Differences in density did not account for the results, as the clones did not differ in vegetative growth rates nor did they change the growth rates over relevant densities.ConclusionsThese results suggest that social competition and something beyond solitary growth differences occurs during the vegetative stage when amoebae eat bacteria and divide by binary fission. The high degree of repeatability of our results indicates that these effects are strong and points to the importance of new approaches to studying interactions in D. discoideum.

Collaboration


Dive into the Debra A. Brock's collaboration.

Top Co-Authors

Avatar

Joan E. Strassmann

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Diane Hatton

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Robin R. Ammann

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Susanne DiSalvo

Southern Illinois University Edwardsville

View shared research outputs
Top Co-Authors

Avatar

Kai Jones

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Karen Ehrenman

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Tong Gao

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David F. Lindsey

Howard Hughes Medical Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge