Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Debra A. Fischer is active.

Publication


Featured researches published by Debra A. Fischer.


Science | 2010

Kepler Planet-Detection Mission: Introduction and First Results

William J. Borucki; David G. Koch; Gibor Basri; Natalie M. Batalha; Timothy M. Brown; Douglas A. Caldwell; John C. Caldwell; Jørgen Christensen-Dalsgaard; William D. Cochran; Edna DeVore; Edward W. Dunham; Andrea K. Dupree; Thomas Gautier; John C. Geary; Ronald L. Gilliland; Alan Gould; Steve B. Howell; Jon M. Jenkins; Y. Kondo; David W. Latham; Geoffrey W. Marcy; Soren Meibom; Hans Kjeldsen; Jack J. Lissauer; David G. Monet; David R. Morrison; Dimitar D. Sasselov; Jill Tarter; Alan P. Boss; D. E. Brownlee

Detecting Distant Planets More than 400 planets have been detected outside the solar system, most of which have masses similar to that of the gas giant planet, Jupiter. Borucki et al. (p. 977, published online 7 January) summarize the planetary findings derived from the first six weeks of observations with the Kepler mission whose objective is to search for and determine the frequency of Earth-like planets in the habitable zones of other stars. The results include the detection of five new exoplanets, which confirm the existence of planets with densities substantially lower than those predicted for gas giant planets. Initial observations confirm the existence of planets with densities lower than those predicted for gas giant planets. The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars. The habitable zone is the region where planetary temperatures are suitable for water to exist on a planet’s surface. During the first 6 weeks of observations, Kepler monitored 156,000 stars, and five new exoplanets with sizes between 0.37 and 1.6 Jupiter radii and orbital periods from 3.2 to 4.9 days were discovered. The density of the Neptune-sized Kepler-4b is similar to that of Neptune and GJ 436b, even though the irradiation level is 800,000 times higher. Kepler-7b is one of the lowest-density planets (~0.17 gram per cubic centimeter) yet detected. Kepler-5b, -6b, and -8b confirm the existence of planets with densities lower than those predicted for gas giant planets.


The Astrophysical Journal | 2005

The Planet-Metallicity Correlation

Debra A. Fischer; Jeff A. Valenti

We have recently carried out spectral synthesis modeling to determine Teff, log g, v sin i, and [Fe/H] for 1040 FGK-type stars on the Keck, Lick, and Anglo-Australian Telescope planet search programs. This is the first time that a single, uniform spectroscopic analysis has been made for every star on a large Doppler planet search survey. We identify a subset of 850 stars that have Doppler observations sufficient to detect uniformly all planets with radial velocity semiamplitudes K > 30 m s-1 and orbital periods shorter than 4 yr. From this subset of stars, we determine that fewer than 3% of stars with -0.5 +0.3 dex, 25% of observed stars have detected gas giant planets. A power-law fit to these data relates the formation probability for gas giant planets to the square of the number of metal atoms. High stellar metallicity also appears to be correlated with the presence of multiple-planet systems and with the total detected planet mass. This data set was examined to better understand the origin of high metallicity in stars with planets. None of the expected fossil signatures of accretion are observed in stars with planets relative to the general sample: (1) metallicity does not appear to increase as the mass of the convective envelopes decreases, (2) subgiants with planets do not show dilution of metallicity, (3) no abundance variations for Na, Si, Ti, or Ni are found as a function of condensation temperature, and (4) no correlations between metallicity and orbital period or eccentricity could be identified. We conclude that stars with extrasolar planets do not have an accretion signature that distinguishes them from other stars; more likely, they are simply born in higher metallicity molecular clouds.


Astrophysical Journal Supplement Series | 2005

Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs

Jeff A. Valenti; Debra A. Fischer

We present a uniform catalog of stellar properties for 1040 nearby F, G, and K stars that have been observed by the Keck, Lick, and AAT planet search programs. Fitting observed echelle spectra with synthetic spectra yielded effective temperature, surface gravity, metallicity, projected rotational velocity, and abundances of the elements Na, Si, Ti, Fe, and Ni, for every star in the catalog. Combining V-band photometry and Hipparcos parallaxes with a bolometric correction based on the spectroscopic results yielded stellar luminosity, radius, and mass. Interpolating Yonsei-Yale isochrones to the luminosity, effective temperature, metallicity, and α-element enhancement of each star yielded a theoretical mass, radius, gravity, and age range for most stars in the catalog. Automated tools provide uniform results and make analysis of such a large sample practical. Our analysis method differs from traditional abundance analyses in that we fit the observed spectrum directly, rather than trying to match equivalent widths, and we determine effective temperature and surface gravity from the spectrum itself, rather than adopting values based on measured photometry or parallax. As part of our analysis, we determined a new relationship between macroturbulence and effective temperature on the main sequence. Detailed error analysis revealed small systematic offsets with respect to the Sun and spurious abundance trends as a function of effective temperature that would be inobvious in smaller samples. We attempted to remove these errors by applying empirical corrections, achieving a precision per spectrum of 44 K in effective temperature, 0.03 dex in metallicity, 0.06 dex in the logarithm of gravity, and 0.5 km s-1 in projected rotational velocity. Comparisons with previous studies show only small discrepancies. Our spectroscopically determined masses have a median fractional precision of 15%, but they are systematically 10% higher than masses obtained by interpolating isochrones. Our spectroscopic radii have a median fractional precision of 3%. Our ages from isochrones have a precision that varies dramatically with location in the Hertzsprung-Russell diagram. We plan to extend the catalog by applying our automated analysis technique to other large stellar samples.


The Astrophysical Journal | 2006

Catalog of Nearby Exoplanets

R. P. Butler; Jason T. Wright; Geoffrey W. Marcy; Debra A. Fischer; S. S. Vogt; C. G. Tinney; Hugh R. A. Jones; B. D. Carter; John Asher Johnson; Cheryl McCarthy; Alan J. Penny

We present a catalog of nearby exoplanets. It contains the 172 known low-mass companions with orbits established through radial velocity and transit measurements around stars within 200 pc. We include five previously unpublished exoplanets orbiting the stars HD 11964, HD 66428, HD 99109, HD 107148, and HD 164922. We update orbits for 83 additional exoplanets, including many whose orbits have not been revised since their announcement, and include radial velocity time series from the Lick, Keck, and Anglo-Australian Observatory planet searches. Both these new and previously published velocities are more precise here due to improvements in our data reduction pipeline, which we applied to archival spectra. We present a brief summary of the global properties of the known exoplanets, including their distributions of orbital semimajor axis, minimum mass, and orbital eccentricity.


The Astrophysical Journal | 1992

Multiplicity among M dwarfs

Debra A. Fischer; Geoffrey W. Marcy

We examine surveys of M dwarfs within 20 pc to determine the incidence of stellar companions. Observational data are drawn from high-quality surveys, including IR-array imaging, precise velocities, IR speckle interferometry, and visual imaging, and their respective incompleteness is determined. Each technique permits detection of companions down to the H-burning limit, and each is nearly complete (owing to the proximity of M dwarfs) within a specific range of separation, the farthest being ∼10 4 AU


The Astrophysical Journal | 2011

KEPLER'S FIRST ROCKY PLANET: KEPLER-10b*

Natalie M. Batalha; William J. Borucki; Stephen T. Bryson; Lars A. Buchhave; Douglas A. Caldwell; Jørgen Christensen-Dalsgaard; David R. Ciardi; Edward W. Dunham; Francois Fressin; Thomas N. Gautier; Ronald L. Gilliland; Michael R. Haas; Steve B. Howell; Jon M. Jenkins; Hans Kjeldsen; David G. Koch; David W. Latham; Jack J. Lissauer; Geoffrey W. Marcy; Jason F. Rowe; Dimitar D. Sasselov; Sara Seager; Jason H. Steffen; Guillermo Torres; Gibor Basri; Timothy M. Brown; David Charbonneau; Jessie L. Christiansen; Bruce D. Clarke; William D. Cochran

NASAs Kepler Mission uses transit photometry to determine the frequency of Earth-size planets in or near the habitable zone of Sun-like stars. The mission reached a milestone toward meeting that goal: the discovery of its first rocky planet, Kepler-10b. Two distinct sets of transit events were detected: (1) a 152 ± 4 ppm dimming lasting 1.811 ± 0.024 hr with ephemeris T [BJD] = 2454964.57375^(+0.00060)_(–0.00082) + N * 0.837495^(+0.000004)_(–0.000005) days and (2) a 376 ± 9 ppm dimming lasting 6.86 ± 0.07 hr with ephemeris T [BJD] = 2454971.6761^(+0.0020)_(–0.0023) + N * 45.29485^(+0.00065) _(–0.00076) days. Statistical tests on the photometric and pixel flux time series established the viability of the planet candidates triggering ground-based follow-up observations. Forty precision Doppler measurements were used to confirm that the short-period transit event is due to a planetary companion. The parent star is bright enough for asteroseismic analysis. Photometry was collected at 1 minute cadence for >4 months from which we detected 19 distinct pulsation frequencies. Modeling the frequencies resulted in precise knowledge of the fundamental stellar properties. Kepler-10 is a relatively old (11.9 ± 4.5 Gyr) but otherwise Sun-like main-sequence star with T_(eff) = 5627 ± 44 K, M_⋆ = 0.895 ± 0.060 M_⊙ , and R_⋆ = 1.056 ± 0.021 R_⊙. Physical models simultaneously fit to the transit light curves and the precision Doppler measurements yielded tight constraints on the properties of Kepler-10b that speak to its rocky composition: M_P = 4.56^9+1.17)_(–1.29) M_⊕, R_P = 1.416^(+0.033)_(–0.036) R_⊕, and ρ_P = 8.8^(+2.1)_(–2.9) g cm^(–3). Kepler-10b is the smallest transiting exoplanet discovered to date.


Science | 2011

Kepler-16: a transiting circumbinary planet.

Laurance R. Doyle; Joshua A. Carter; Daniel C. Fabrycky; Robert W. Slawson; Steve B. Howell; Joshua N. Winn; Jerome A. Orosz; Andrej Prˇsa; William F. Welsh; Samuel N. Quinn; David W. Latham; Guillermo Torres; Lars A. Buchhave; Geoffrey W. Marcy; Jonathan J. Fortney; Avi Shporer; Eric B. Ford; Jack J. Lissauer; Darin Ragozzine; Michael Rucker; Natalie M. Batalha; Jon M. Jenkins; William J. Borucki; David G. Koch; Christopher K. Middour; Jennifer R. Hall; Sean McCauliff; Michael N. Fanelli; Elisa V. Quintana; Matthew J. Holman

An exoplanet has been observed, comparable in size and mass to Saturn, that orbits a pair of stars. We report the detection of a planet whose orbit surrounds a pair of low-mass stars. Data from the Kepler spacecraft reveal transits of the planet across both stars, in addition to the mutual eclipses of the stars, giving precise constraints on the absolute dimensions of all three bodies. The planet is comparable to Saturn in mass and size and is on a nearly circular 229-day orbit around its two parent stars. The eclipsing stars are 20 and 69% as massive as the Sun and have an eccentric 41-day orbit. The motions of all three bodies are confined to within 0.5° of a single plane, suggesting that the planet formed within a circumbinary disk.


Publications of the Astronomical Society of the Pacific | 2011

The Exoplanet Orbit Database

Jason T. Wright; Onsi Fakhouri; Geoffrey W. Marcy; Eunkyu Han; Ying Feng; John Asher Johnson; Andrew W. Howard; Debra A. Fischer; Jeff A. Valenti; Jay Anderson; Nikolai Piskunov

We present a database of well-determined orbital parameters of exoplanets, and their host stars’ properties. This database comprises spectroscopic orbital elements measured for 427 planets orbiting 363 stars from radial velocity and transit measurements as reported in the literature. We have also compiled fundamental transit parameters, stellar parameters, and the method used for the planets discovery. This Exoplanet Orbit Database includes all planets with robust, well measured orbital parameters reported in peer-reviewed articles. The database is available in a searchable, filterable, and sortable form online through the Exoplanets Data Explorer table, and the data can be plotted and explored through the Exoplanet Data Explorer plotter. We use the Data Explorer to generate publication-ready plots, giving three examples of the signatures of exoplanet migration and dynamical evolution: We illustrate the character of the apparent correlation between mass and period in exoplanet orbits, the different selection biases between radial velocity and transit surveys, and that the multiplanet systems show a distinct semimajor-axis distribution from apparently singleton systems.


Science | 2010

The Occurrence and Mass Distribution of Close-in Super-Earths, Neptunes, and Jupiters

Andrew W. Howard; Geoffrey W. Marcy; John Asher Johnson; Debra A. Fischer; Jason T. Wright; Howard Isaacson; Jeff A. Valenti; Jay Anderson; D. N. C. Lin; Shigeru Ida

Closing in on Extraterrestrial Earths With close to 500 extrasolar planets discovered to date, researchers are starting to estimate the occurrence of low-mass planets to help our understanding of how planets form and evolve. Based on observations of 166 nearby stars with the Keck Telescope, Howard et al. (p. 653) report the occurrence of short-period planets around Sun-like stars as a function of planet mass. Planet formation models predicted that planet occurrence would increase with decreasing mass, such that satellites with masses similar to that of Neptune, and less, would be more common than gas-giant planets like Jupiter. Contrary to predictions, there is no dearth of planets with masses 5 to 30 times that of Earth, implying that the models may need revision. Nevertheless, observations suggest that 23% of Sun-like stars may be orbited by a close-in, terrestrial mass planet. About one-quarter of observed Sun-like stars harbors a close-in terrestrial-mass planet. The questions of how planets form and how common Earth-like planets are can be addressed by measuring the distribution of exoplanet masses and orbital periods. We report the occurrence rate of close-in planets (with orbital periods less than 50 days), based on precise Doppler measurements of 166 Sun-like stars. We measured increasing planet occurrence with decreasing planet mass (M). Extrapolation of a power-law mass distribution fitted to our measurements, df/dlogM = 0.39 M−0.48, predicts that 23% of stars harbor a close-in Earth-mass planet (ranging from 0.5 to 2.0 Earth masses). Theoretical models of planet formation predict a deficit of planets in the domain from 5 to 30 Earth masses and with orbital periods less than 50 days. This region of parameter space is in fact well populated, implying that such models need substantial revision.


The Astrophysical Journal | 2004

A Neptune-Mass Planet Orbiting the Nearby M Dwarf GJ 436*

R. Paul Butler; Steven S. Vogt; Geoffrey W. Marcy; Debra A. Fischer; Jason T. Wright; Gregory W. Henry; Greg Laughlin; Jack J. Lissauer

We report precise Doppler measurements of GJ 436 (M2.5 V) obtained at Keck Observatory. The velocities reveal a planetary companion with orbital period of 2.644 days, eccentricity of 0.12 (consistent with zero), and velocity semiamplitude of K = 18.1 m s-1. The minimum mass (M sin i) for the planet is 0.067MJup = 1.2MNep = 21MEarth, making it the lowest mass exoplanet yet found around a main-sequence star and the first candidate in the Neptune-mass domain. GJ 436 (mass = 0.41 M☉) is only the second M dwarf found to harbor a planet, joining the two-planet system around GJ 876. The low mass of the planet raises questions about its constitution, with possible compositions of primarily H and He gas, ice/rock, or rock-dominated. The implied semimajor axis is a = 0.028 AU = 14 stellar radii, raising issues of planet formation, migration, and tidal coupling with the star. GJ 436 is more than 3 Gyr old, based on both kinematic and chromospheric diagnostics. The star exhibits no photometric variability on the 2.644 day Doppler period to a limiting amplitude of 0.0004 mag, supporting the planetary interpretation of the Doppler periodicity. Photometric transits of the planet across the star are ruled out for gas giant compositions and are also unlikely for solid compositions. As the third closest known planetary system, GJ 436 warrants follow-up observations by high-resolution optical and infrared imaging and by the Space Interferometry Mission.

Collaboration


Dive into the Debra A. Fischer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew W. Howard

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

John Asher Johnson

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

R. Paul Butler

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar

Jason T. Wright

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Howard Isaacson

San Francisco State University

View shared research outputs
Top Co-Authors

Avatar

Steven S. Vogt

University of California

View shared research outputs
Top Co-Authors

Avatar

Gregory W. Henry

Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

G. W. Marcy

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge