Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Debra C. DuBois is active.

Publication


Featured researches published by Debra C. DuBois.


Journal of Pharmacokinetics and Pharmacodynamics | 2002

Fifth-Generation Model for Corticosteroid Pharmacodynamics: Application to Steady-State Receptor Down-Regulation and Enzyme Induction Patterns during Seven-Day Continuous Infusion of Methylprednisolone in Rats

Rohini Ramakrishnan; Debra C. DuBois; Richard R. Almon; Nancy A. Pyszczynski; William J. Jusko

A fifth-generation model for receptor/gene-mediated corticosteroid effects was proposed based on results from a 50 mg/kg IV bolus dose of methylprednisolone (MPL) in male adrenalectomized rats, and confirmed using data from other acute dosage regimens. Steady-state equations for receptor down-regulation and tyrosine aminotransferase (TAT) enzyme induction patterns were derived. Five groups of male Wistar rats (n=5/group) were subcutaneously implanted with Alzet mini-pumps primed to release saline or 0.05, 0.1, 0.2, and 0.3 mg/kg/hr of MPL for 7 days. Rats were sacrificed at the end of the infusion. Plasma MPL concentrations, blood lymphocyte counts, and hepatic cytosolic free receptor density, receptor mRNA, TAT mRNA, and TAT enzyme levels were quantitated. The pronounced steroid effects were evidenced by marked losses in body weights and changes in organ weights. All four treatments caused a dose-dependent reduction in hepatic receptor levels, which correlated with the induction of TAT mRNA and TAT enzyme levels. The 7 day receptor mRNA and free receptor density correlated well with the model predicted steady-state levels. However, the extent of enzyme induction was markedly higher than that predicted by the model suggesting that the usual receptor/gene-mediated effects observed upon single/intermittent dosing of MPL may be countered by alterations in other aspects of the system. A mean IC50 of 6.1 ng/mL was estimated for the immunosuppressive effects of methylprednisolone on blood lymphocytes. The extent and duration of steroid exposure play a critical role in mediating steroid effects and advanced PK/PD models provide unique insights into controlling factors.


Advanced Drug Delivery Reviews | 2010

Circadian rhythms in gene expression: Relationship to physiology, disease, drug disposition and drug action.

Siddharth Sukumaran; Richard R. Almon; Debra C. DuBois; William J. Jusko

Circadian rhythms (24h cycles) are observed in virtually all aspects of mammalian function from expression of genes to complex physiological processes. The master clock is present in the suprachiasmatic nucleus (SCN) in the anterior part of the hypothalamus and controls peripheral clocks present in other parts of the body. Components of this core clock mechanism regulate the circadian rhythms in genome-wide mRNA expression, which in turn regulate various biological processes. Disruption of circadian rhythms can be either the cause or the effect of various disorders including metabolic syndrome, inflammatory diseases and cancer. Furthermore, circadian rhythms in gene expression regulate both the action and disposition of various drugs and affect therapeutic efficacy and toxicity based on dosing time. Understanding the regulation of circadian rhythms in gene expression plays an important role in both optimizing the dosing time for existing drugs and in the development of new therapeutics targeting the molecular clock.


Journal of Pharmacokinetics and Biopharmaceutics | 1998

Fourth-generation model for corticosteroid pharmacodynamics: a model for methylprednisolone effects on receptor/gene-mediated glucocorticoid receptor down-regulation and tyrosine aminotransferase induction in rat liver.

Yu-Nien Sun; Debra C. DuBois; Richard R. Almon; William J. Jusko

A fourth-generation pharmacokinetic/pharmacodynamic (PK/PD) model for receptor/genemediated effects of corticosteroids was developed. Male adrenalectomized Wistar rats received a 50 mg/kg iv bolus dose of methylprednisolone (MPL). Plasma concentrations of MPL, hepatic glucocorticoid receptor (GR) messenger RNA (mRNA) and GR density, tyrosine aminotransferase (TAT) mRNA, and TAT activity in liver were determined at various time points up to 72 hr after MPL dosing. Down-regulation of GR mRNA and GR density were observed: GR mRNA level declined to 45–50% of the baseline in 8–10 hr, and slowly returned to predose level in about 3 days; GR density fell to 0 soon after dosing and returned to the baseline in two phases. The first phase, occurring in the first 10 hr, entailed recovery from 0 to 30%. The second phase was parallel to the GR mRNA recovery phase. Two indirect response models were applied for GR mRNA dynamics regulated by activated steroid-receptor complex. A full PK/PD model for GR mRNA/GR down-regulation was proposed, including GR recycling theory. TAT mRNA began to increase at about 1.5 hr, reached the maximum at about 5.5 hr, and declined to the baseline at about 14 hr after MPL dosing. TAT induction followed a similar pattern with a delay of about 1–2 hr. A transcription compartment was applied as one of the cascade events leading to TAT mRNA and TAT induction. Pharmacodynamic parameters were obtained by fitting seven differential equations piecewise using the maximum likelihood method in the ADAPT II program. This model can describe GR down-regulation and the precursor/product relationship between TAT mRNA and TAT in receptor/gene-mediated corticosteroid effects.


Journal of Pharmacology and Experimental Therapeutics | 2008

Modeling Corticosteroid Effects in a Rat Model of Rheumatoid Arthritis I: Mechanistic Disease Progression Model for the Time Course of Collagen-Induced Arthritis in Lewis Rats

Justin C. Earp; Debra C. DuBois; Diana S. Molano; Nancy A. Pyszczynski; Craig E. Keller; Richard R. Almon; William J. Jusko

A mechanism-based model was developed to describe the time course of arthritis progression in the rat. Arthritis was induced in male Lewis rats with type II porcine collagen into the base of the tail. Disease progression was monitored by paw swelling, bone mineral density (BMD), body weights, plasma corticosterone (CST) concentrations, and tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and glucocorticoid receptor (GR) mRNA expression in paw tissue. Bone mineral density was determined by PIXImus II dual energy X-ray densitometry. Plasma CST was assayed by high-performance liquid chromatography. Cytokine and GR mRNA were determined by quantitative real-time polymerase chain reaction. Disease progression models were constructed from transduction and indirect response models and applied using S-ADAPT software. A delay in the onset of increased paw TNF-α and IL-6 mRNA concentrations was successfully characterized by simple transduction. This rise was closely followed by an up-regulation of GR mRNA and CST concentrations. Paw swelling and body weight responses peaked approximately 21 days after induction, whereas bone mineral density changes were greatest at 23 days after induction. After peak response, the time course in IL-1β, IL-6 mRNA, and paw edema slowly declined toward a disease steady state. Model parameters indicate TNF-α and IL-1β mRNA most significantly induce paw edema, whereas IL-6 mRNA exerted the most influence on BMD. The model for bone mineral density captures rates of turnover of cancellous and cortical bone and the fraction of each in the different regions analyzed. This small systems model integrates and quantitates multiple factors contributing to arthritis in rats.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2008

Relationships between circadian rhythms and modulation of gene expression by glucocorticoids in skeletal muscle

Richard R. Almon; Eric Yang; William Lai; Ioannis P. Androulakis; Svetlana Ghimbovschi; Eric P. Hoffman; William J. Jusko; Debra C. DuBois

The existence and maintenance of biological rhythms linked to the 24-h light-dark cycle are essential to the health and functioning of an organism. Although much is known concerning central clock mechanisms, much less is known about control in peripheral tissues. In this study, circadian regulation of gene expression was examined in rat skeletal muscle. A rich time series involving 54 animals euthanized at 18 distinct time points within the 24-h cycle was performed, and mRNA expression in gastrocnemius muscles was examined using Affymetrix gene arrays. Data mining identified 109 genes that were expressed rhythmically, which could be grouped into eight distinct temporal clusters within the 24-h cycle. These genes were placed into 11 functional categories, which were examined within the context of temporal expression. Transcription factors involved in the regulation of central rhythms were examined, and eight were found to be rhythmically expressed in muscle. Because endogenous glucocorticoids are a major effector of circadian rhythms, genes identified here were compared with those identified in previous studies as glucocorticoid regulated. Of the 109 genes identified here as circadian rhythm regulated, only 55 were also glucocorticoid regulated. Examination of transcription factors involved in circadian control suggests that corticosterone may be the initiator of their rhythmic expression patterns in skeletal muscle.


Journal of Endocrinology | 2008

Gene Expression Analysis of Hepatic Roles in Cause and Development of Diabetes in Goto-Kakizaki Rats

Richard R. Almon; Debra C. DuBois; William Lai; Bai Xue; Jing Nie; William J. Jusko

Progression of diabetes was studied in male Goto-Kakizaki (GK) spontaneously diabetic rats between 4 and 20 weeks of age, and compared with Wistar-Kyoto (WKY) controls. Five animals from each strain were killed at 4, 8, 12, 16, and 20 weeks of age. Body weight, plasma glucose, and plasma insulin were measured. WKY rats showed a significantly larger weight gain than GK animals from 8 weeks of age onward. Plasma glucose was relatively stable in WKY. By contrast, plasma glucose was higher in GK than WKY even at 4 weeks and continued to increase up to 12 weeks and then maintained a hyperglycemic plateau throughout the remainder of the experiment. Plasma insulin was relatively stable in WKY from 8 weeks onward but was sharply elevated in GK between 4 and 8 weeks. After 8 weeks, insulin declined in GK with GK concentrations lower than WKY at 20 weeks, suggesting beta-cell failure. Gene expression in liver was explored using Affymetrix 230-2 gene arrays. Data mining identified 395 probe sets out of more than 31,000 that were differentially regulated. Excluding unidentifiable probe sets and considering duplicate probe sets, there were 311 genes that were expressed differently in the liver of the two strains. A functional analysis of these genes indicated that disruption of lipid metabolism in the liver is a major consequence of the chronic hyperglycemia in the GK strain. In addition, the results suggest that chronic inflammation contributes significantly to the development of diabetes in the GK rats.


Journal of Pharmacology and Experimental Therapeutics | 2008

Circadian variations in rat liver gene expression: relationships to drug actions.

Richard R. Almon; Eric Yang; William Lai; Ioannis P. Androulakis; Debra C. DuBois; William J. Jusko

Chronopharmacology is an important but under-explored aspect of therapeutics. Rhythmic variations in biological processes can influence drug action, including pharmacodynamic responses, due to circadian variations in the availability or functioning of drug targets. We hypothesized that global gene expression analysis can be useful in the identification of circadian-regulated genes involved in drug action. Circadian variations in gene expression in rat liver were explored using Affymetrix gene arrays. A rich time series involving animals analyzed at 18 time points within the 24-h cycle was generated. Of the more than 15,000 probe sets on these arrays, 265 exhibited oscillations with a 24-h frequency. Cluster analysis yielded five distinct circadian clusters, with approximately two thirds of the transcripts reaching maximal expression during the dark/active period of the animal. Of the 265 probe sets, 107 were identified as having potential therapeutic importance. The expression levels of clock genes were also investigated in this study. Five clock genes exhibited circadian variation in the liver, and data suggest that these genes may also be regulated by corticosteroids.


Aaps Journal | 2005

Pharmacogenomic responses of rat liver to methylprednisolone: An approach to mining a rich microarray time series

Richard R. Almon; Debra C. DuBois; Jin Y. Jin; William J. Jusko

A data set was generated to examine global changes in gene expression in rat liver over time in response to a single bolus dose of methylprednisolone. Four control animals and 43 drug-treated animals were humanely killed at 16 different time points following drug administration. Total RNA preparation from the livers of these animals were hybridized to 47 individual Affymetrix RU34A gene chips, generating data for 8799 different probe sets for each chip. Data mining techniques that are applicable to gene array time series data sets in order to identify drug-regulated changes in gene expression were applied to this data set. A series of 4 sequentially applied filters were developed that were designed to eliminate probe sets that were not expressed in the tissue, were not regulated by the drug treatment, or did not meet defined quality control standards. These filters eliminated 7287 probe sets of the 8799 total (82%) from further consideration. Application of judiciously chosen filters is an effective tool for data mining of time series data sets. The remaining data can then be further analyzed by clustering and mathematical modeling techniques.


Journal of Pharmacokinetics and Biopharmaceutics | 1998

Dose-Dependence and Repeated-Dose Studies for Receptor/Gene-Mediated Pharmacodynamics of Methylprednisolone on Glucocorticoid Receptor Down-Regulation and Tyrosine Aminotransferase Induction in Rat Liver

Yu‐Nien Sun; Debra C. DuBois; Richard R. Almon; Nancy A. Pyszczynski; William J. Jusko

Dose-dependent and repeated-dose effects of methylprednisolone (MPL) on down-regulation of glucocorticoid receptor messenger RNA (GR mRNA) and GR density, as well as tyrosine aminotransferase (TAT) mRNA and TAT induction by receptor/gene-mediated mechanisms in rat liver were examined. A previously developed pharmacokinetic/pharmacodynamic (PK/PD) model was used to design these studies which sought to challenge the model. Three groups of male adrenalectomized Wistar rats received MPL by iv injection: low-dose (10 mg/kg at Time 0), high-dose (50 mg/kg at Time 0), and dual-dose (50 mg/kg at Time 0 and 24 hr). Plasma concentrations of MPL, and hepatic content of free GR, GR mRNA, TAT mRNA, and TAT activity were determined. The P-Pharm program was applied for population analysis of MPL PK revealing low interindividual variation in CL and Vc values (3–14%). Two indirect response models were applied to test two competing hypotheses for GR mRNA dynamics. Indirect Pharmacodynamic Response Model I (Model A) where the complex in the nucleus decreases the transcription rate of GR mRNA better described GR mRNA/GR down-regulation. Levels of TAT mRNA began to increase at 1–2 hr, reached a maximum at 5–6 hr, and declined to the baseline at 12–14 hr after MPL dosing. The induction of TAT activity followed a similar pattern with a delay of about 1–2 hr. The low-dose group had 50–60% of the TAT mRNA and TAT induction compared to the high-dose group. Since the GR density returned to about 70% of the baseline level before the second 50 mg/kg dose at 24 hr, tolerance was found for TAT mRNA/TAT induction where only 50–60% of the initial responses were produced. Our fourth-generation model describes the dose dependence and tolerance effects of TAT mRNA/TAT induction by MPL involving multiple-step signal transduction controlled by the steroid regimen, free GR density, and GR occupancy. This model may provide the foundation for studying other induced proteins or enzymes mediated by the similar receptor/nuclear events.


The Journal of Steroid Biochemistry and Molecular Biology | 1995

Differential dynamics of receptor down-regulation and tyrosine aminotransferase induction following glucocorticoid treatment

Debra C. DuBois; Zhi-Xin Xu; Lorraine I. McKay; Richard R. Almon; Nancy Pyszcznski; William J. Jusko

Autoregulation of glucocorticoid receptor (GR) concentration in vivo may be an important determinant of steroid sensitivity. The dynamics of GR regulation were assessed and compared to regulation of tyrosine aminotransferase (TAT) expression in liver tissue taken from rats treated with a single 50 mg/kg i.v. dose of methylprednisolone. Plasma methylprednisolone concentrations were determined by HPLC analysis. Receptor and TAT message levels were determined by quantitative Northern hybridization. Methylprednisolone plasma kinetics showed a half-life of 0.6 h. Receptor occupancy occurred rapidly and cytosolic GR reappeared over 2-12 h. TAT activity rose between 2 and 6 h and then dissipated. Reduction in receptor mRNA levels occurred very rapidly, being detectable by 30 min following steroid administration. A down-regulated steady-state in GR message expression was reached by 2 h post-injection, and was maintained throughout the 18 h examined in this study. Comparison of methylprednisolone kinetics demonstrated that down-regulation was maintained long after drug was eliminated. In contrast, TAT message induction occurred with a sharp peak; maximal induction occurred between 5-6 h and return to baseline at approx. 8-10 h post-induction. This study shows that unlike TAT induction, GR message repression in vivo does not require continual presence of hormone.

Collaboration


Dive into the Debra C. DuBois's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric P. Hoffman

Children's National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jing Nie

University at Buffalo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bai Xue

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge