Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Debra J. Medway is active.

Publication


Featured researches published by Debra J. Medway.


Circulation Research | 2013

Living without creatine: unchanged exercise capacity and response to chronic myocardial infarction in creatine-deficient mice.

Craig A. Lygate; Dunja Aksentijevic; Dana Dawson; M ten Hove; D Phillips; J P De Bono; Debra J. Medway; Liam Sebag-Montefiore; Imre Hunyor; Keith M. Channon; K Clarke; Sevasti Zervou; Hugh Watkins; Robert S. Balaban; Stefan Neubauer

Rationale: Creatine is thought to be involved in the spatial and temporal buffering of ATP in energetic organs such as heart and skeletal muscle. Creatine depletion affects force generation during maximal stimulation, while reduced levels of myocardial creatine are a hallmark of the failing heart, leading to the widely held view that creatine is important at high workloads and under conditions of pathological stress. Objective: We therefore hypothesised that the consequences of creatine-deficiency in mice would be impaired running capacity, and exacerbation of heart failure following myocardial infarction. Methods and Results: Surprisingly, mice with whole-body creatine deficiency due to knockout of the biosynthetic enzyme (guanidinoacetate N-methyltransferase [GAMT]) voluntarily ran just as fast and as far as controls (>10 km/night) and performed the same level of work when tested to exhaustion on a treadmill. Furthermore, survival following myocardial infarction was not altered, nor was subsequent left ventricular (LV) remodelling and development of chronic heart failure exacerbated, as measured by 3D-echocardiography and invasive hemodynamics. These findings could not be accounted for by compensatory adaptations, with no differences detected between WT and GAMT−/− proteomes. Alternative phosphotransfer mechanisms were explored; adenylate kinase activity was unaltered, and although GAMT−/− hearts accumulated the creatine precursor guanidinoacetate, this had negligible energy-transfer activity, while mitochondria retained near normal function. Conclusions: Creatine-deficient mice show unaltered maximal exercise capacity and response to chronic myocardial infarction, and no obvious metabolic adaptations. Our results question the paradigm that creatine is essential for high workload and chronic stress responses in heart and skeletal muscle. # Novelty and Significance {#article-title-47}Rationale: Creatine is thought to be involved in the spatial and temporal buffering of ATP in energetic organs such as heart and skeletal muscle. Creatine depletion affects force generation during maximal stimulation, while reduced levels of myocardial creatine are a hallmark of the failing heart, leading to the widely held view that creatine is important at high workloads and under conditions of pathological stress. Objective: We therefore hypothesised that the consequences of creatine-deficiency in mice would be impaired running capacity, and exacerbation of heart failure following myocardial infarction. Methods and Results: Surprisingly, mice with whole-body creatine deficiency due to knockout of the biosynthetic enzyme (guanidinoacetate N-methyltransferase [GAMT]) voluntarily ran just as fast and as far as controls (>10 km/night) and performed the same level of work when tested to exhaustion on a treadmill. Furthermore, survival following myocardial infarction was not altered, nor was subsequent left ventricular (LV) remodelling and development of chronic heart failure exacerbated, as measured by 3D-echocardiography and invasive hemodynamics. These findings could not be accounted for by compensatory adaptations, with no differences detected between WT and GAMT−/− proteomes. Alternative phosphotransfer mechanisms were explored; adenylate kinase activity was unaltered, and although GAMT−/− hearts accumulated the creatine precursor guanidinoacetate, this had negligible energy-transfer activity, while mitochondria retained near normal function. Conclusions: Creatine-deficient mice show unaltered maximal exercise capacity and response to chronic myocardial infarction, and no obvious metabolic adaptations. Our results question the paradigm that creatine is essential for high workload and chronic stress responses in heart and skeletal muscle.


American Journal of Physiology-heart and Circulatory Physiology | 2009

Advanced methods for quantification of infarct size in mice using three-dimensional high-field late gadolinium enhancement MRI

Steffen Bohl; Craig A. Lygate; Hannah Barnes; Debra J. Medway; Lee-Anne Stork; Jeanette Schulz-Menger; Stefan Neubauer; Jürgen E. Schneider

Conventional methods to quantify infarct size after myocardial infarction in mice are not ideal, requiring either tissue destruction for histology or relying on nondirect measurements such as wall motion. We therefore implemented a fast, high-resolution method to directly measure infarct size in vivo using three-dimensional (3D) late gadolinium enhancement MRI (3D-LGE). Myocardial T1 relaxation was quantified at 9.4 Tesla in five mice, and reproducibility was tested by repeat imaging after 5 days. In a separate set of healthy and infarcted mice (n = 8 of each), continuous T1 measurements were made following intravenous or intraperitoneal injection of a contrast agent (0.5 micromol/g gadolinium-diethylenetriamine pentaacetic acid). The time course of T1 contrast development between viable and nonviable myocardium was thereby determined, with optimal postinjection imaging windows and inversion times identified. Infarct sizes were quantified using 3D-LGE and compared with triphenyltetrazolium chloride histology on day 1 after infarction (n = 8). Baseline myocardial T1 was highly reproducible: the mean value was 952 +/- 41 ms. T1 contrast peaked earlier after intravenous injection than with intraperitoneal injection; however, contrast between viable and nonviable myocardium was comparable for both routes (P = 0.31), with adequate contrast remaining for at least 60 min postinjection. Excellent correlation was obtained between infarct sizes derived from 3D-LGE and histology (r = 0.91, P = 0.002), and Bland-Altman analysis indicated good agreement free from systematic bias. We have validated an improved 3D MRI method to noninvasively quantify infarct size in mice with unsurpassed spatial resolution and tissue contrast. This method is particularly suited to studies requiring early quantification of initial infarct size, for example, to measure damage before intervention with stem cells.


Cardiovascular Research | 2012

Moderate elevation of intracellular creatine by targeting the creatine transporter protects mice from acute myocardial infarction

Craig A. Lygate; Steffen Bohl; Michiel ten Hove; Kiterie M. E. Faller; Philip J. Ostrowski; Sevasti Zervou; Debra J. Medway; Dunja Aksentijevic; Liam Sebag-Montefiore; Julie Wallis; K Clarke; Hugh Watkins; Jürgen E. Schneider; Stefan Neubauer

Aims Increasing energy storage capacity by elevating creatine and phosphocreatine (PCr) levels to increase ATP availability is an attractive concept for protecting against ischaemia and heart failure. However, testing this hypothesis has not been possible since oral creatine supplementation is ineffectual at elevating myocardial creatine levels. We therefore used mice overexpressing creatine transporter in the heart (CrT-OE) to test for the first time whether elevated creatine is beneficial in clinically relevant disease models of heart failure and ischaemia/reperfusion (I/R) injury. Methods and results CrT-OE mice were selected for left ventricular (LV) creatine 20–100% above wild-type values and subjected to acute and chronic coronary artery ligation. Increasing myocardial creatine up to 100% was not detrimental even in ageing CrT-OE. In chronic heart failure, creatine elevation was neither beneficial nor detrimental, with no effect on survival, LV remodelling or dysfunction. However, CrT-OE hearts were protected against I/R injury in vivo in a dose-dependent manner (average 27% less myocardial necrosis) and exhibited greatly improved functional recovery following ex vivo I/R (59% of baseline vs. 29%). Mechanisms contributing to ischaemic protection in CrT-OE hearts include elevated PCr and glycogen levels and improved energy reserve. Furthermore, creatine loading in HL-1 cells did not alter antioxidant defences, but delayed mitochondrial permeability transition pore opening in response to oxidative stress, suggesting an additional mechanism to prevent reperfusion injury. Conclusion Elevation of myocardial creatine by 20–100% reduced myocardial stunning and I/R injury via pleiotropic mechanisms, suggesting CrT activation as a novel, potentially translatable target for cardiac protection from ischaemia.


American Journal of Physiology-heart and Circulatory Physiology | 2009

Refined approach for quantification of in vivo ischemia-reperfusion injury in the mouse heart

Steffen Bohl; Debra J. Medway; Jeanette Schulz-Menger; Jürgen E. Schneider; Stefan Neubauer; Craig A. Lygate

Cardiac ischemia-reperfusion experiments in the mouse are important in vivo models of human disease. Infarct size is a particularly important scientific readout as virtually all cardiocirculatory pathways are affected by it. Therefore, such measurements must be exact and valid. The histological analysis, however, remains technically challenging, and the resulting quality is often unsatisfactory. For this report we have scrutinized each step involved in standard double-staining histology. We have tested published approaches and challenged their practicality. As a result, we propose an improved and streamlined protocol, which consistently yields high-quality histology, thereby minimizing experimental noise and group sizes.


Journal of Magnetic Resonance Imaging | 2011

Accelerating cine-MR Imaging in Mouse Hearts Using Compressed Sensing

Tobias Wech; Angela Lemke; Debra J. Medway; Lee-Anne Stork; Craig A. Lygate; Stefan Neubauer; Herbert Köstler; Jürgen E. Schneider

To combine global cardiac function imaging with compressed sensing (CS) in order to reduce scan time and to validate this technique in normal mouse hearts and in a murine model of chronic myocardial infarction.


Journal of Molecular and Cellular Cardiology | 2009

Cardiac phenotype of mitochondrial creatine kinase knockout mice is modified on a pure C57BL/6 genetic background.

Craig A. Lygate; Imre Hunyor; Debra J. Medway; Joe P. de Bono; Dana Dawson; Julie Wallis; Liam Sebag-Montefiore; Stefan Neubauer

UNLABELLED Discrepant results for the phenotype of mitochondrial creatine kinase knockout mice (Mt-CK(-/-)) could be due to mixed genetic background and use of non-littermate controls. We therefore backcrossed with C57BL/6J for >8 generations, followed by extensive in vivo cardiac phenotyping. Echocardiography and in vivo LV haemodynamics were performed in independent cohorts at 20-40 weeks and 1 year. No significant differences were observed for ECG, LV volumes, pressures, and systolic or diastolic function compared to littermate controls. Furthermore, responses to dobutamine were not different, indicating preserved contractile reserve. Contrary to published reports using Mt-CK(-/-) on a mixed background, we observed normal LV weights even in year old mice, and gene expression of common hypertrophic markers were not elevated. However, previously undetected adaptations were observed: an increase in activity of the cytosolic MM-CK isoenzyme (+20% vs WT, P=0.0009), and of citrate synthase (+18% vs WT, P=0.0007), a marker for mitochondrial volume. In a 3-week voluntary wheel running protocol, Mt-CK(-/-) ran significantly less per day (P=0.009) and attained lower maximum speed compared to controls (P=0.0003), suggesting impaired skeletal muscle function. MM-CK isoenzyme activity was significantly elevated in soleus but not gastrocnemius muscle of KO mice, and citrate synthase activities were normal in both, suggesting compensatory mechanisms are incomplete in skeletal muscle. CONCLUSIONS in contrast to previous reports using a mixed genetic background, Mt-CK(-/-) on a C57BL/6 background do not develop LV hypertrophy or dysfunction even up to 1 year, and this may be explained by a compensatory increase in MM-CK activity and mitochondrial volume.


Magnetic Resonance in Medicine | 2008

Ultra-fast and accurate assessment of cardiac function in rats using accelerated MRI at 9.4 Tesla

Jürgen E. Schneider; Titus Lanz; Hannah Barnes; Debra J. Medway; Lee Anne Stork; Craig A. Lygate; Sean Smart; Mark A. Griswold; Stefan Neubauer

MRI can accurately and reproducibly assess cardiac function in rodents but requires relatively long imaging times. Therefore, parallel imaging techniques using a 4‐element RF‐coil array and MR sequences for cardiac MRI in rats were implemented at ultra‐high magnetic fields (9.4 Tesla [T]). The hypothesis that these developments would result in a major reduction in imaging time without loss of accuracy was tested on female Wistar rats under isoflurane anesthesia. High‐resolution, contiguous short‐axis slices (thickness 1.5 mm) were acquired covering the entire heart. Two interleaved data sets (i) with the volume coil (eight averages) and (ii) with the four‐element coil array (one average) were obtained. In addition, two‐, three‐, and fourfold accelerated data sets were generated through postprocessing of the coil array data, followed by a TGRAPPA reconstruction, resulting in five data sets per rat (in‐plane voxel size 100 × 100 μm). Using a single blinded operator, excellent agreement was obtained between volume coil (acquisition time: 88 min) and the fourfold accelerated (<3 min) data sets (e.g., LV mass 436 ± 21 mg vs 433 ± 19 mg; ejection fraction 74 ± 5% vs 75 ± 4%). This finding demonstrates that it is possible to complete a rat cine‐MRI study under 3 min with low variability and without losing temporal or spatial resolution, making high throughput screening programs feasible. Magn Reson Med 59:636–641, 2008.


European Journal of Heart Failure | 2010

High-energy phosphotransfer in the failing mouse heart: role of adenylate kinase and glycolytic enzymes

Dunja Aksentijevic; Craig A. Lygate; Kimmo Makinen; Sevasti Zervou; Liam Sebag-Montefiore; Debra J. Medway; Hannah Barnes; Jürgen E. Schneider; Stefan Neubauer

To measure the activity of the key phosphotransfer enzymes creatine kinase (CK), adenylate kinase (AK), and glycolytic enzymes in two common mouse models of chronic heart failure.


Journal of Cardiovascular Magnetic Resonance | 2011

Accelerating global left-ventricular function assessment in mice using reduced slice acquisition and three-dimensional guide-point modelling

Alistair A. Young; Debra J. Medway; Craig A. Lygate; Stefan Neubauer; Jürgen E. Schneider

BackgroundTo investigate the utility of three-dimensional guide-point modeling (GPM) to reduce the time required for CMR evaluation of global cardiac function in mice, by reducing the number of image slices required for accurate quantification of left-ventricular (LV) mass and volumes.MethodsFive female C57Bl/6 mice 8 weeks post myocardial infarction induced by permanent occlusion of the left coronary artery, and six male control (un-operated) C57Bl/6 mice, were subject to CMR examination under isoflurane anaesthesia. Contiguous short axis (SAX) slices (1 mm thick 7-9 slices) were obtained together with two long axis (LAX) slices in two chamber and four chamber orientations. Using a mathematical model of the heart to interpolate information between the available slices, GPM LV mass and volumes were determined using full slice (all SAX and two LAX), six slice (four SAX and two LAX) and four slice (two SAX and two LAX) analysis protocols. All results were compared with standard manual volumetric analysis using all SAX slices.ResultsInfarct size was 39.1 ± 5.1% of LV myocardium. No significant differences were found in left ventricular mass and volumes between the standard and GPM full and six slice protocols in infarcted mice (113 ± 10, 116 ± 11, and 117 ± 11 mg respectively for mass), or between the standard and GPM full, six and four slice protocols in control mice, (105 ± 14, 106 ± 10, 104 ± 12, and 105 ± 7 mg respectively for mass). Significant differences were found in LV mass (135 ± 18 mg) and EF using the GPM four slice protocol in infarcted mice (p < 0.05).ConclusionGPM enables accurate analysis of LV function in mice with relatively large infarcts using a reduced six slice acquisition protocol, and in mice with normal/symmetrical left-ventricular topology using a four slice protocol.


American Journal of Physiology-endocrinology and Metabolism | 2013

A role for thioredoxin-interacting protein (Txnip) in cellular creatine homeostasis.

Sevasti Zervou; Tanmoy Ray; Natasha Sahgal; Liam Sebag-Montefiore; Rebecca L. Cross; Debra J. Medway; Philip J. Ostrowski; Stefan Neubauer; Craig A. Lygate

Creatine is important for energy metabolism, yet excitable cells such as cardiomyocytes do not synthesize creatine and rely on uptake via a specific membrane creatine transporter (CrT; SLC6A8). This process is tightly controlled with downregulation of CrT upon continued exposure to high creatine via mechanisms that are poorly understood. Our aim was to identify candidate endogenous CrT inhibitors. In 3T3 cells overexpressing the CrT, creatine uptake plateaued at 3 h in response to 5 mM creatine but peaked 33% higher (P < 0.01) in the presence of cycloheximide, suggesting CrT regulation depends on new protein synthesis. Global gene expression analysis identified thioredoxin-interacting protein (Txnip) as the only significantly upregulated gene (by 46%) under these conditions (P = 0.036), subsequently verified independently at mRNA and protein levels. There was no change in Txnip expression with exposure to 5 mM taurine, confirming a specific response to creatine rather than osmotic stress. Small-interfering RNA against Txnip prevented Txnip upregulation in response to high creatine, maintained normal levels of creatine uptake, and prevented downregulation of CrT mRNA. These findings were relevant to the in vivo heart since creatine-deficient mice showed 39.71% lower levels of Txnip mRNA, whereas mice overexpressing the CrT had 57.6% higher Txnip mRNA levels and 28.7% higher protein expression compared with wild types (mean myocardial creatine concentration 124 and 74 nmol/mg protein, respectively). In conclusion, we have identified Txnip as a novel negative regulator of creatine levels in vitro and in vivo, responsible for mediating substrate feedback inhibition and a potential target for modulating creatine homeostasis.

Collaboration


Dive into the Debra J. Medway's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jürgen E. Schneider

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dana Dawson

University of Aberdeen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge