Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Debra L. Denton is active.

Publication


Featured researches published by Debra L. Denton.


Ecology and Society | 2004

Challenges in regulating pesticide mixtures

Michael J. Lydy; Jason B. Belden; Craig E. Wheelock; Bruce D. Hammock; Debra L. Denton

This paper introduces the field of mixture toxicity and the challenges in regulating pesticide mixtures. Even though pesticides are unique chemical stressors designed to have biological activity that can affect a number of nontarget species, they are intentionally placed into the environment in large quantities. Currently, methods and terminology for evaluating mixture toxicity are poorly established. The most common approach used is the assumption of additive concentration, with the concentrations adjusted for potency to a reference toxicant. Using this approach, the joint action of pesticides that have similar chemical structures and modes of toxic action can be predicted. However, this approach and other modeling techniques often provide little insight into the observed toxicity produced by mixtures of pesticides from different classes. Particularly difficult to model are mixtures that involve a secondary toxicant that changes the toxicokinetics of a primary toxicant. This may result in increased activation or a change in the persistence of the primary toxicant within the organism and may be responsible for a several-fold increase or decrease in toxicity. At present, the ecological effects caused by mixtures of pesticides are given little consideration in the regulatory process. However, mixtures are being considered in relation to human health in the pesticide registration process, setting a precedent that could be followed for ecological protection. Additionally, pesticide mixtures may be regulated through toxicity testing of surface water under the Clean Water Act. The limits of our basic knowledge of how mixtures interact are compromising both these avenues for regulating mixtures. We face many challenges to adequately protecting the environment from mixture toxicity; these challenges include understanding the interactions of toxicants within an organism, identifying the mixtures that most commonly occur and cause adverse effects, and developing a regulatory structure capable of minimizing environmental impacts.


Journal of Environmental Quality | 2008

Mitigation assessment of vegetated drainage ditches for collecting irrigation runoff in California.

M. T. Moore; Debra L. Denton; Charles M. Cooper; Wrysinski J; Miller Jl; Reece K; Crane D; Robins P

Widespread contamination of California water bodies by the organophosphate insecticides diazinon and chlorpyrifos is well documented. While their usage has decreased over the last few years, a concomitant increase in pyrethroid usage (e.g., permethrin) (replacement insecticides) has occurred. Vegetated agricultural drainage ditches (VADD) have been proposed as a potential economical and environmentally efficient management practice to mitigate the effects of pesticides in irrigation and storm runoff. Three ditches were constructed in Yolo County, California for a field trial. A U-shaped vegetated ditch, a V-shaped vegetated ditch, and a V-shaped unvegetated ditch were each amended for 8 h with a mixture of diazinon, permethrin, and suspended sediment simulating an irrigation runoff event. Water, sediment, and plant samples were collected spatially and temporally and analyzed for diazinon and permethrin concentrations. Pesticide half-lives were similar between ditches and pesticides, ranging from 2.4 to 6.4 h. Differences in half-distances (distance required to reduce initial pesticide concentration by 50%) among pesticides and ditches were present, indicating importance of vegetation in mitigation. Cis-permethrin half-distances in V ditches ranged from 22 m (V-vegetated) to 50 m (V-unvegetated). Half-distances for trans-permethrin were similar, ranging from 21 m (V-vegetated) to 55 m (V-unvegetated). Diazinon half-distances demonstrated the greatest differences (55 m for V-vegetated and 158 m for V-unvegetated). Such economical and environmentally successful management practices will offer farmers, ranchers, and landowners a viable alternative to more conventional (and sometimes expensive) practices.


Environmental Toxicology and Chemistry | 2011

Test of significant toxicity: A statistical application for assessing whether an effluent or site water is truly toxic

Debra L. Denton; Jerry Diamond; Lei Zheng

The U.S. Environmental Protection Agency (U.S. EPA) and state agencies implement the Clean Water Act, in part, by evaluating the toxicity of effluent and surface water samples. A common goal for both regulatory authorities and permittees is confidence in an individual test result (e.g., no-observed-effect concentration [NOEC], pass/fail, 25% effective concentration [EC25]), which is used to make regulatory decisions, such as reasonable potential determinations, permit compliance, and watershed assessments. This paper discusses an additional statistical approach (test of significant toxicity [TST]), based on bioequivalence hypothesis testing, or, more appropriately, test of noninferiority, which examines whether there is a nontoxic effect at a single concentration of concern compared with a control. Unlike the traditional hypothesis testing approach in whole effluent toxicity (WET) testing, TST is designed to incorporate explicitly both α and β error rates at levels of toxicity that are unacceptable and acceptable, given routine laboratory test performance for a given test method. Regulatory management decisions are used to identify unacceptable toxicity levels for acute and chronic tests, and the null hypothesis is constructed such that test power is associated with the ability to declare correctly a truly nontoxic sample as acceptable. This approach provides a positive incentive to generate high-quality WET data to make informed decisions regarding regulatory decisions. This paper illustrates how α and β error rates were established for specific test method designs and tests the TST approach using both simulation analyses and actual WET data. In general, those WET test endpoints having higher routine (e.g., 50th percentile) within-test control variation, on average, have higher method-specific α values (type I error rate), to maintain a desired type II error rate. This paper delineates the technical underpinnings of this approach and demonstrates the benefits to both regulatory authorities and permitted entities.


Environmental Toxicology and Chemistry | 2011

USE OF VEGETATED AGRICULTURAL DRAINAGE DITCHES TO DECREASE PESTICIDE TRANSPORT FROM TOMATO AND ALFALFA FIELDS IN CALIFORNIA, USA

Matthew T. Moore; Debra L. Denton; Charles M. Cooper; Jeanette Wrysinski; Jeff L. Miller; Inge Werner; Gerald Horner; D. Crane; Diane B. Holcomb; George M. Huddleston

Irrigation and storm water runoff from agricultural fields has the potential to cause impairment to downstream aquatic receiving systems. Over the last several years, scientists have discovered the benefit of using edge-of-field practices, such as vegetated agricultural drainage ditches, in the mitigation of pesticides and sediment. After demonstrating this practices feasibility in California, field trials were initiated to document irrigation runoff pesticide mitigation in California alfalfa and tomato fields. In the alfalfa field, chlorpyrifos concentration was decreased by 20% from the inflow to the ditch outflow. Thirty-two percent of the measured chlorpyrifos mass was associated with ditch plant material. In the tomato field, permethrin concentration was decreased by 67% and there was a 35% reduction in suspended sediment concentration from inflow to the ditch outflow. When surface water was not present in the ditch systems, the sediment was a significant repository for pesticides. Based on the field trials, vegetated agricultural drainage ditches can be successfully used as part of a suite of management practices to reduce pesticide and sediment runoff into aquatic receiving systems.


Environmental Toxicology and Chemistry | 2010

USE OF VEGETATED AGRICULTURAL DRAINAGE DITCHES TO DECREASE TOXICITY OF IRRIGATION RUNOFF FROM TOMATO AND ALFALFA FIELDS IN CALIFORNIA, USA

Inge Werner; Linda A. Deanovic; Jeff L. Miller; Debra L. Denton; D. Crane; Abdou Mekebri; Matthew T. Moore; Jeanette Wrysinski

The current study investigated the potential of vegetated drainage ditches for mitigating the impact of agricultural irrigation runoff on downstream aquatic ecosystems. Water column toxicity to larval fathead minnow (Pimephales promelas),and the amphipod Hyalella azteca was measured for 12 h or less at the ditch inflow and outflow, using custom-built in situ exposure systems. In addition, water and sediment samples were subject to standard toxicity tests with Ceriodaphnia dubia and H. azteca, respectively. No acute toxicity to larval fathead minnow was observed; however, runoff was highly toxic to invertebrates. Passage through a 389- to 402-m section of vegetated ditch had a mitigating effect and reduced toxicity to some degree. However, runoff from an alfalfa field treated with chlorpyrifos remained highly toxic to both invertebrate species, and runoff from a tomato field treated with permethrin remained highly toxic to H. azteca after passage through the ditch. Predicted toxic units calculated from insecticide concentrations in runoff and 96-h median lethal concentration (LC50) values generally agreed with C. dubia toxicity measured in the laboratory but significantly underestimated in situ toxicity to H. azteca. Sediments collected near the ditch outflow were toxic to H. azteca. Results from the current study demonstrate that experimental vegetated ditches were unable to eliminate the risk of irrigation runoff to aquatic ecosystems. In addition, protective measures based on chemical concentrations or laboratory toxicity tests with C. dubia do not ensure adequate protection of aquatic ecosystems from pyrethroid-associated toxicity.


Integrated Environmental Assessment and Management | 2015

Complex watersheds, collaborative teams: Assessing pollutant presence and effects in the San Francisco Delta.

Adam D. Biales; Debra L. Denton; Dan Riordan; Richard Breuer; Angela L. Batt; D. Crane; Heiko L. Schoenfuss

There is a great diversity of sources of chemical contaminants and stressors over large geographic areas. Chemical contaminant inputs and magnitude can potentially exhibit wide seasonal variation over large geographic areas. Together, these factors make linking exposure to monitored chemical contaminants and effects difficult. In practice, this linkage typically relies on relatively limited chemical occurrence data loosely coupled with individual effects, and population- or community-level assessments. Increased discriminatory power may be gained by approaching watershed level assessment in a more holistic manner, drawing from a number of disciplines that target endpoints spanning levels of the biological hierarchy. Using the Sacramento River as a case study, the present study aimed to 1) evaluate the performance of new analytical and biomarker tools in a real world setting and their potential for linking occurrence and effect; 2) characterize the effects of geographic and temporal variability through the integration of suborganismal, tissue, and individual level endpoints, as well as extensive chemical analyses; 3) identify knowledge gaps and research needs that limit the implementation of this holistic approach; and 4) provide an experimental design workflow for these types of assessments. Sites were selected to target inputs into the Sacramento River as it transitions from an agricultural to a mixed but primarily urban landscape. Chemical analyses were conducted on surface water samples at each site in both the spring and fall for pesticides, hormones, and active pharmaceutical ingredients (APIs). Active pharmaceutical ingredients were more often detected across sampling events in the fall; however, at the most downstream site the number of analytes detected and their concentrations were greater in the spring, which may be due to seasonal differences in rainfall. Changes in gene and protein expression targeting endocrine and reproductive effects were observed within each sampling event; however, they were inconsistent across seasons. Larval mortality at the most downstream site was seen in both seasons; however, behavioral changes were only observed in the spring. No clear linkages of specific analyte exposure to biological response were observed, nor were linkages across biological levels of organization. This failure may have resulted from limitations of the scope of molecular endpoints used, inconsistent timing of exposure, or discordance of analytical chemistry through grab sampling and longer term, integrative exposure. Together, results indicate a complicated view of the watershed.


Environmental Toxicology and Chemistry | 2013

Evaluation of whole effluent toxicity data characteristics and use of Welch's T‐test in the test of significant toxicity analysis

Lei Zheng; Jerry Diamond; Debra L. Denton

The U.S. Environmental Protection Agency (U.S. EPA) and state agencies evaluate the toxicity of effluent and surface water samples based on statistical endpoints derived from multiconcentration tests (e.g., no observed effect concentration, EC25). The test of significant toxicity (TST) analysis is a two-sample comparison test that uses Welchs t test to compare organism responses in a sample (effluent or surface water) with responses in a control or site sample. In general, any form of t test (Welchs t included) is appropriate only if the data meet assumptions of normality and homogeneous variances. Otherwise, nonparametric tests are recommended. TST was designed to use Welchs t as the statistical test for all whole effluent toxicity (WET) test data. The authors evaluated the suitability of using Welchs t test for analyzing two-sample toxicity (WET) data, and within the TST approach, by examining the distribution and variances of data from over 2,000 WET tests and by conducting multiple simulations of WET test data. Simulated data were generated having variances and nonnormal distributions similar to observed WET test data for control and the effluent treatment groups. The authors demonstrate that (1) moderately unequal variances (similar to WET data) have little effect on coverage of the t test or Welch t test (for normally distributed data), and (2) for nonnormally distributed data (similar in distribution to WET data) TST, using Welchs t test, has close to nominal coverage on the basis of simulations with up to a ninefold difference in variance between the effluent and control groups (∼95th percentile based on observed WET test data).


Environmental Toxicology and Chemistry | 2003

Enhancing toxicity test performance by using a statistical criterion

Debra L. Denton; John F. Fox; Florence Fulk

Aquatic toxicity tests are laboratory experiments that measure the biological effect (e.g., growth, survival, reproduction) of effluents, receiving waters, or storm water on aquatic organisms. These toxicity tests must be performed using the best laboratory practices, and every effort must be made to enhance repeatability of the test method. We evaluated the generated reference toxicant test data for insurance of a level of quality assurance for tests over time within a laboratory and among laboratories. We recommend the reporting and evaluation of the percent minimum significant difference (PMSD) value for all toxicity test results. The minimum significant difference (MSD) represents the smallest difference between the control mean and a treatment mean that leads to the statistical rejection of the null hypothesis (i.e., no toxicity) at each concentration of the toxicity test dilution series. The MSD provides an indication of within-test variability, and smaller values of MSD are associated with increased power to detect a toxic effect. We recommend upper and lower PMSD bounds for each test method in order to minimize within-test variability and increase statistical power. To ensure that PMSD does not exceed an upper bound, testing laboratories may need to increase replication, decrease variability among replicates, or increase the control mean performance.


Integrated Environmental Assessment and Management | 2014

Monitoring the aquatic toxicity of mosquito vector control spray pesticides to freshwater receiving waters

Bryn M. Phillips; Brian S. Anderson; Jennifer P. Voorhees; Katie Siegler; Debra L. Denton; Patti TenBrook; Karen Larsen; Philip Isorena; Ronald S. Tjeerdema

Pesticides are applied to state and local waterways in California to control insects such as mosquitoes, which are known to serve as a vector for West Nile Virus infection of humans. The California State Water Resources Control Board adopted a National Pollutant Discharge Elimination System General Permit to address the discharge to waters of the United States of pesticides resulting from adult and larval mosquito control. Because pesticides used in spray activities have the potential to cause toxicity to nontarget organisms in receiving waters, the current study was designed to determine whether toxicity testing provides additional, useful environmental risk information beyond chemical analysis in monitoring spray pesticide applications. Monitoring included a combination of aquatic toxicity tests and chemical analyses of receiving waters from agricultural, urban, and wetland habitats. The active ingredients monitored included the organophosphate pesticides malathion and naled, the pyrethroid pesticides etofenprox, permethrin, and sumithrin, pyrethrins, and piperonyl butoxide (PBO). Approximately 15% of the postapplication water samples were significantly toxic. Toxicity of half of these samples was attributed to the naled breakdown product dichlorvos. Toxicity of 2 other water samples likely occurred when PBO synergized the effects of pyrethroid pesticides that were likely present in the receiving system. Four of 43 postapplication sediment samples were significantly more toxic than their corresponding pre-application samples, but none of the observed toxicity was attributed to the application events. These results indicate that many of the spray pesticides used for adult mosquito control do not pose significant acute toxicity risk to invertebrates in receiving systems. In the case of naled in water, analysis of only the active ingredient underestimated potential impacts to the receiving system, because toxicity was attributed to the breakdown product, dichlorvos. Toxicity testing can provide useful risk information about unidentified, unmeasured toxicants or mixtures of toxicants. In this case, toxicity testing provided information that could lead to the inclusion of dichlorvos monitoring as a permit requirement.


Integrated Environmental Assessment and Management | 2012

It is time for changes in the analysis of whole effluent toxicity data.

Jerry Diamond; Debra L. Denton; Brian S. Anderson; Bryn M. Phillips

The whole effluent toxicity (WET) program in the United States, Canada, and other countries typically requires multi concentration testing of effluents. While multiconcentration testing of chemicals is desirable for regulatory and scientific reasons, we believe this requirement is not as efficient for evaluating effluent compliance in a WET program. The key regulatory question of concern is whether an effluent is toxic or not, which is best answered statistically using a hypothesis approach, not a point estimate approach. However, the traditional hypothesis approach currently recommended does not reward high within-test precision. This report describes the need for 3 specific changes in the analysis of WET compliance data that we believe would yield a more robust WET regulatory program: (1) restate the null hypothesis so that test power is associated with demonstrating that the effluent is not toxic, (2) use USEPAs Test of Significant Toxicity (based on the noninferiority approach) to identify unacceptable toxicity as well as acceptable effects with a high probability, and (3) evaluate only the test control and the critical concentration of concern (e.g., instream waste concentration). We demonstrate that instituting these 3 changes would provide: Positive incentives for permittees to produce high-quality WET data, a transparent analysis approach in which the permittee could have greater control over regulatory decisions based on test results, and potentially a less expensive testing program because fewer effluent concentrations need to be examined within a test. As a result, WET test frequency could be increased for the same cost as current testing programs while providing greater representativeness of effluent quality.

Collaboration


Dive into the Debra L. Denton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Crane

California Department of Fish and Wildlife

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles M. Cooper

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge