Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Debra S. Finn is active.

Publication


Featured researches published by Debra S. Finn.


Journal of The North American Benthological Society | 2006

Functional trait niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships

N. LeRoy Poff; Julian D. Olden; Nicole K. M. Vieira; Debra S. Finn; Mark P. Simmons; Boris C. Kondratieff

Abstract The use of species traits to characterize the functional composition of benthic invertebrate communities has become well established in the ecological literature. This approach holds much potential for predicting changes of both species and species assemblages along environmental gradients in terms of traits that are sensitive to local environmental conditions. Further, in the burgeoning field of biomonitoring, a functional approach provides a predictive basis for understanding community-level responses along gradients of environmental alteration caused by humans. Despite much progress in recent years, the full potential of the functional traits-based approach is currently limited by several factors, both conceptual and methodological. Most notably, we lack adequate understanding of how individual traits are intercorrelated and how this lack of independence among traits reflects phylogenetic (evolutionary) constraint. A better understanding is needed if we are to make the transition from a largely univariate approach that considers single-trait responses along single environmental gradients to a multivariate one that more realistically accounts for the responses of many traits across multiple environmental gradients characteristic of most human-dominated landscapes. Our primary objective in this paper is to explore the issue of inter-trait correlations for lotic insects and to identify opportunities and challenges for advancing the theory and application of traits-based approaches in stream community ecology. We created a new database on species-trait composition of North American lotic insects. Using published accounts and expert opinion, we collected information on 20 species traits (in 59 trait states) that fell into 4 broad categories: life-history, morphological, mobility, and ecological. First, we demonstrate the importance of considering how the linkage of specific trait states within a taxon is critical to developing a more-robust traits-based community ecology. Second, we examine the statistical correlations among traits and trait states for the 311 taxa to identify trait syndromes and specify which traits provide unique (uncorrelated) information that can be used to guide trait selection in ecological studies. Third, we examine the evolutionary associations among traits by mapping trait states onto a phylogentic tree derived from morphological and molecular analyses and classifications from the literature. We examine the evolutionary lability of individual traits by assessing the extent to which they are unconstrained by phylogenic relationships across the taxa. By focusing on the lability of traits within lotic genera of Ephemeroptera, Plecoptera, and Trichoptera, taxa often used as water-quality indicators, we show how a traits-based approach can allow a priori expectations of the differential response of these taxa to specific environmental gradients. We conclude with some ideas about how specific trait linkages, statistical correlations among traits, and evolutionary lability of traits can be used in combination with a mechanistic understanding of trait response along environmental gradients to select robust traits useful for a more predictive community ecology. We indicate how these new insights can direct the research in statistical modeling that is necessary to achieve the full potential of models that can predict how multiple traits will respond along multiple environmental gradients.


BioScience | 2009

Genes in Streams: Using DNA to Understand the Movement of Freshwater Fauna and Their Riverine Habitat

Jane M. Hughes; Daniel J. Schmidt; Debra S. Finn

Today, decisions regarding the management and conservation of populations are often informed to some degree by population genetics. A fundamental measure sought by decisionmakers is the degree of connectivity between populations, which, when approached from a genetic perspective, may be influenced by many factors, making it difficult to generalize across taxa, habitats, or life histories. In the case of freshwater-limited fauna, the shared constraint of habitat structure (e.g., a dendritic stream network) imposed on all species in the system simplifies the task. A number of models have been proposed that predict how populations of taxa with different life-history traits and dispersal capabilities interact within structured freshwater habitats of this kind. In this article, we summarize these models and illustrate the general patterns of phylogeographic structure expected to occur under different scenarios of freshwater population connectivity. Additionally, we describe how the genetic structure of stream inhabitants can reflect historical changes in the physical structure of streams and thus open a window on past patterns of connectivity. A greater understanding of these concepts will contribute to an improved multidisciplinary approach to managing freshwater ecosystems.


Journal of The North American Benthological Society | 2011

Small but mighty: headwaters are vital to stream network biodiversity at two levels of organization

Debra S. Finn; Núria Bonada; Cesc Múrria; Jane M. Hughes

Abstract Headwaters (stream orders 1–2) traditionally have been considered depauperate compared to mid-order streams (orders 3–4)—a conclusion that arises from a perception of streams as linear systems and emphasizes change in average &agr; (local) diversity along streams. We hypothesized an opposite pattern for &bgr; (among-site) diversity and suggest that headwaters might account for a large degree of basin-scale biodiversity if considered within the more realistic framework of streams as branching networks. We assembled pre-existing biodiversity data from across the globe to test this hypothesis broadly at the population-genetic (mitochondrial haplotype diversity within species) and community (species/taxonomic diversity) levels, with a focus on macroinvertebrates. We standardized 18 (9 headwater and 9 mid-order) population-genetic and 16 (10 headwater and 6 mid-order) community-level ecoregional data sets from 5 global ecozones for robust comparisons of &bgr;-diversity estimates between the 2 stream-size categories. At the population-genetic level, we applied measures of among-site variation commonly used at both population-genetic (FST and &PHgr;ST) and community (Sørensens dissimilarity with both presence/absence and abundance data) levels and developed a novel strategy to compare expected rates of loss of &ggr; (regional) diversity as individual sites are eliminated sequentially from regions. At the community level, we limited analyses to Sørensens presence/absence measures. We found that Sørensens dissimilarity was significantly greater among headwaters than among mid-order streams at both population-genetic and community levels. We also showed that individual headwater reaches accounted for greater proportions of genetic &ggr; diversity than did mid-order reaches. However, neither FST nor &PHgr;ST was significantly different between stream-size categories. These measures, which have been used traditionally for comparisons of population-genetic variation, measure proportions of total variation rather than solely among-site variation (i.e., they also are influenced by within-site variation). In contrast, Sørensens dissimilarity measures only among-site variation and, therefore, is presumably more useful for reflecting general &bgr; diversity. Overall results suggest that, on average, headwaters probably contribute disproportionately to biodiversity at the network scale. This finding demands a shift in thinking about the biodiversity contributions of small headwaters and has strong conservation implications for imperiled headwater streams around the world.


Molecular Ecology | 2006

Spatial population genetic structure and limited dispersal in a Rocky Mountain alpine stream insect

Debra S. Finn; David M. Theobald; William C. Black; N. LeRoy Poff

Using the mitochondrial cytochrome oxidase I (COI) gene, we assessed the phylogeographic structure of Prosimulium neomacropyga, a black fly (Simuliidae) whose distribution in the US Southern Rockies ecoregion is limited to alpine tundra streams. Given high habitat specificity, lack of hydrological connection between streams, and a terrestrial environment restrictive to insect flight, we hypothesized limited gene flow. A spatially nested sampling design showed that grouping populations according to high‐elevation ‘islands’ of alpine tundra (which typically include headwater streams of > 1 watershed) explained a significant proportion of genetic variation while grouping streams according to major watershed (across islands) did not. Nested clade analysis and isolation‐by‐distance (IBD) relationships further implicated limited ongoing gene flow within but not among the isolated alpine islands. IBD was strong among five streams within an individual island using each of four alternative models of pairwise landscape connectivity for flying insects. Results of all landscape models were positively correlated, suggesting that straight‐line distance is an acceptable surrogate for presumably more biologically meaningful connectivity measures in this system. IBD was significantly weaker across the entire study area, comprised of three separate islands. Overall, population structure was significant with FST = 0.38, suggesting limited dispersal across a small spatial extent.


Proceedings of the Royal Society of London B: Biological Sciences | 2008

Evolution of aquatic insect behaviours across a gradient of disturbance predictability

David A. Lytle; Michael T. Bogan; Debra S. Finn

Natural disturbance regimes—cycles of fire, flood, drought or other events—range from highly predictable (disturbances occur regularly in time or in concert with a proximate cue) to highly unpredictable. While theory predicts how populations should evolve under different degrees of disturbance predictability, there is little empirical evidence of how this occurs in nature. Here, we demonstrate local adaptation in populations of an aquatic insect occupying sites along a natural gradient of disturbance predictability, where predictability was defined as the ability of a proximate cue (rainfall) to signal a disturbance (flash flood). In controlled behavioural experiments, populations from predictable environments responded to rainfall events by quickly exiting the water and moving sufficiently far from the stream to escape flash floods. By contrast, populations from less predictable environments had longer response times and lower response rates, reflecting the uncertainty inherent to these environments. Analysis with signal detection theory showed that for 13 out of 15 populations, observed response times were an optimal compromise between the competing risks of abandoning versus remaining in the stream, mediated by the rainfall–flood correlation of the local environment. Our study provides the first demonstration that populations can evolve in response to differences in disturbance predictability, and provides evidence that populations can adapt to among-stream differences in flow regime.


Science of The Total Environment | 2015

Human effects on ecological connectivity in aquatic ecosystems: Integrating scientific approaches to support management and mitigation

David A. Crook; Winsor H. Lowe; Fred W. Allendorf; Tibor Erős; Debra S. Finn; Bronwyn M. Gillanders; Wade Lynton Hadwen; Chris Harrod; Virgilio Hermoso; Simon Jennings; Raouf Kilada; Ivan Nagelkerken; Michael M. Hansen; Timothy J. Page; Cynthia Riginos; Brian Fry; Jane M. Hughes

Understanding the drivers and implications of anthropogenic disturbance of ecological connectivity is a key concern for the conservation of biodiversity and ecosystem processes. Here, we review human activities that affect the movements and dispersal of aquatic organisms, including damming of rivers, river regulation, habitat loss and alteration, human-assisted dispersal of organisms and climate change. Using a series of case studies, we show that the insight needed to understand the nature and implications of connectivity, and to underpin conservation and management, is best achieved via data synthesis from multiple analytical approaches. We identify four key knowledge requirements for progressing our understanding of the effects of anthropogenic impacts on ecological connectivity: autecology; population structure; movement characteristics; and environmental tolerance/phenotypic plasticity. Structuring empirical research around these four broad data requirements, and using this information to parameterise appropriate models and develop management approaches, will allow for mitigation of the effects of anthropogenic disturbance on ecological connectivity in aquatic ecosystems.


Arctic, Antarctic, and Alpine Research | 2008

Emergence and Flight Activity of Alpine Stream Insects in Two Years with Contrasting Winter Snowpack

Debra S. Finn; N. LeRoy Poff

Flight of alpine stream insects has not been well studied but is an important ecological process that ensures successful mating and allows gene flow among relatively isolated populations. In this study, we collected actively flying insects along a perpendicular transect from an alpine headwater stream in the Colorado Rocky Mountains (U.S.A.) during the summer emergence season in two consecutive years with contrasting hydrology: 2002 had minimal snowfall the previous winter, while 2003 snowfall was above average. Flight activity patterns among four common stream taxa were similar to previously reported results from streams below treeline: Ephemeroptera and Plecoptera declined as an inverse power function, Trichoptera declined as a negative exponential function, and Simuliidae did not decrease with lateral distance. Sex ratios typically were strongly biased, possibly a result of the harsh terrestrial environment negatively influencing the naturally more sedentary sex (which varies among taxa). In 2003, the majority of common species emerged approximately one month later than in 2002, and abundance and diversity were greater in 2003 than 2002, patterns potentially attributable to increased snowpack amount and duration. Late-emerging species, by contrast, were less abundant in 2003, likely because that year emergence was delayed to later in the season, when cooler air temperatures reduce flight activity. Our results suggest that alpine streams are sensitive to interannual variation in snowpack, and therefore more research will be needed to address the potential effects of climate change and associated winter snowfall trends on these unexpectedly diverse aquatic systems.


Journal of The North American Benthological Society | 2011

Examining spatial concordance of genetic and species diversity patterns to evaluate the role of dispersal limitation in structuring headwater metacommunities

Debra S. Finn; N. LeRoy Poff

Abstract Given the unique spatial structure of stream habitat and the stochasticity characteristic of lotic ecosystems, metacommunity approaches hold much promise in the field of stream ecology. We take advantage of the tight parallels between neutral theories of molecular evolution and community assembly and present a novel conceptual approach to evaluating the role of stochasticity and dispersal limitation in structuring stream metacommunities. The analogous neutral frameworks generate similar expectations for the spatial structure of species comprising communities and genes comprising populations, particularly among patchily distributed, isolated local habitats (e.g., headwater streams) where among-stream dispersal is expected to be limited. Our emphasis is on the conceptual value of this approach, but we also used a limited data set composed of intensively sampled community and population-genetic data collected from 5 to 7 Rocky Mountain alpine streams for illustrative purposes. We characterized neutral population genetic structure as mitochondrial haplotype distributions for the blackfly Prosimulium neomacropyga, which shows strong genetic isolation by distance across the study region. We assessed community structure as the relative frequencies of ecologically similar species in the family Chironomidae collected annually over 2000–2003. Species richness was positively correlated with haplotype richness across streams (r  =  0.55), and analogous methods revealed significant &bgr; diversity at both the population-genetic (FST  =  0.23) and the community (FST  =  0.16) levels. However, a more spatially explicit comparison of pairwise community dissimilarity and genetic distance revealed no evidence of correlation (Mantel test, r  =  −0.18, p  =  0.54), a result suggesting no effect of spatial distance on community similarity at the relatively fine spatial scale of our study. We discuss 2 key arguments to explain the lack of community distance decay: 1) unaccounted environmental differences among streams, and 2) varying spatial and temporal scales of neutral processes (including genetic drift and ecological drift; i.e., stochastic temporal change) between population-genetic and community levels. Evidence for both selective and neutral explanations is compelling in this system. The explanations cannot be disentangled with the current data, but the study has strong heuristic value that we hope will stimulate future efforts in stream metacommunity analysis.


PLOS ONE | 2014

Geomorphic and Ecological Disturbance and Recovery from Two Small Dams and Their Removal

Desiree Tullos; Debra S. Finn; Cara Walter

Dams are known to impact river channels and ecosystems, both during their lifetime and in their decommissioning. In this study, we applied a before-after-control-impact design associated with two small dam removals to investigate abiotic and biotic recovery trajectories from both the elimination of the press disturbance associated with the presence of dams and the introduction of a pulse disturbance associated with removal of dams. The two case studies represent different geomorphic and ecological conditions that we expected to represent low and high sensitivities to the pulse disturbance of dam removal: the 4 m tall, gravel-filled Brownsville Dam on the wadeable Calapooia River and the 12.5 m tall, sand and gravel-filled Savage Rapids Dam on the largely non-wadeable Rogue River. We evaluated both geomorphic and ecological responses annually for two years post removal, and asked if functional traits of the macroinvertebrate assemblages provided more persistent signals of ecological disturbance than taxonomically defined assemblages over the period of study. Results indicate that: 1) the presence of the dams constituted a strong ecological press disturbance to the near-downstream reaches on both rivers, despite the fact that both rivers passed unregulated flow and sediment during the high flow season; 2) ecological recovery from this press disturbance occurred within the year following the restoration action of dam removal, whereas signals of geomorphic disturbance from the pulse of released sediment persisted two years post-removal, and 3) the strength of the press disturbance and the rapid ecological recovery were detected regardless of whether recovery was assessed by taxonomic or functional assemblages and for both case studies, in spite of their different geomorphic settings.


Oecologia | 2004

Geographic variation in patterns of nestedness among local stream fish assemblages in Virginia

Rosamonde R. Cook; Paul L. Angermeier; Debra S. Finn; N. LeRoy Poff; Kirk L. Krueger

Nestedness of faunal assemblages is a multi-scale phenomenon, potentially influenced by a variety of factors. Prior small-scale studies have found freshwater fish species assemblages to be nested along stream courses as a result of either selective colonization or extinction. However, within-stream gradients in temperature and other factors are correlated with the distributions of many fish species and may also contribute to nestedness. At a regional level, strongly nested patterns would require a consistent set of structuring mechanisms across streams, and correlation among species’ tolerances of the environmental factors that influence distribution. Thus, nestedness should be negatively associated with the spatial extent of the region analyzed and positively associated with elevational gradients (a correlate of temperature and other environmental factors). We examined these relationships for the freshwater fishes of Virginia. Regions were defined within a spatial hierarchy and included whole river drainages, portions of drainages within physiographic provinces, and smaller subdrainages. In most cases, nestedness was significantly stronger in regions of smaller spatial extent and in regions characterized by greater topographic relief. Analysis of hydrologic variability and patterns of faunal turnover provided no evidence that inter-annual colonization/extinction dynamics contributed to elevational differences in nestedness. These results suggest that, at regional scales, nestedness is influenced by interactions between biotic and abiotic factors, and that the strongest nestedness is likely to occur where a small number of organizational processes predominate, i.e., over small spatial extents and regions exhibiting strong environmental gradients.

Collaboration


Dive into the Debra S. Finn's collaboration.

Top Co-Authors

Avatar

N. LeRoy Poff

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

David A. Lytle

Missouri State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cara Walter

Oregon State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Joseph Giersch

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge