Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dedong Wang is active.

Publication


Featured researches published by Dedong Wang.


Journal of Geophysical Research | 2014

Statistical characteristics of EMIC wave‐driven relativistic electron precipitation with observations of POES satellites: Revisit

Zhenzhen Wang; Zhigang Yuan; Ming Li; Huimin Li; Dedong Wang; Haimeng Li; Shiyong Huang; Zheng Qiao

Electromagnetic ion cyclotron (EMIC) waves play an important role in the magnetospheric dynamics and can scatter relativistic electrons in the outer radiation belt into the loss cone leading to the rapid loss of relativistic electrons. In this paper, we present characteristics of EMIC wave-driven relativistic electron precipitation (REP) with observations of six Polar Orbiting Environmental Satellites (POES). Based on the simultaneity between spikes in the P1 0° (Ep = 30 keV–80 keV) and P6 0° (Ee > 1 MeV) channels, in comparison with the criterion of Carson et al. (2013), we improve the algorithm and make it stricter. A total of 436,286 individual half orbits between 1998 and 2010 are inspected by this algorithm. The majority of selected events are observed at L values within the outer radiation belt (3 < L < 7) and more common in 1800–2200 magnetic local time. The distribution of normalized events follows the location of plasmapause contracting toward lower L value with the decrease of the Dst index, implying a strong link between detected events and the plasmapause. The cluster of normalized events moves to later afternoon sector where the peak occurrence of plasmaspheric plumes is located during geomagnetic storms. It is suggested that there is a connection between plasmaspheric plumes and detected events. Corresponding to the peak of event occurrence in 2003, solar wind dynamic pressure has a same peak. In addition, the minimum values of them are coincident. These results indicate that the increase of the solar wind dynamic pressure enhances the likelihood of EMIC wave-driven relativistic electron precipitation.


Geophysical Research Letters | 2015

In situ observations of EMIC waves in O+ band by the Van Allen Probe A

Xiongdong Yu; Zhigang Yuan; Dedong Wang; Haimeng Li; Shiyong Huang; Zhenzhen Wang; Qiao Zheng; Mingxia Zhou; C. A. Kletzing; J. R. Wygant

Through polarization and spectra analysis of the magnetic field observed by the Van Allen Probe A, we present two typical cases of O+ band electromagnetic ion cyclotron (EMIC) waves in the outer plasmasphere or plasma trough. Although such O+ band EMIC waves are rarely observed, 18 different events of O+ band EMIC waves (16 events in the outer plasmasphere and two events in the plasma trough) are found from September 2012 to August 2014 with observations of the Van Allen Probe A. We find that the preferred region for the occurrence of O+ band EMIC waves is in L = 2–5 and magnetic local time  = 03–13, 19–20, which is in accordance with the occurrence region of O+ ion torus. Therefore, our result suggests that the O+ ion torus in the outer plasmasphere during geomagnetic activities should play an important role in the generation of EMIC waves in O+ band.


Journal of Geophysical Research | 2015

Statistical characteristics of EMIC waves: Van Allen Probe observations

Dedong Wang; Zhigang Yuan; Xiongdong Yu; Xiaohua Deng; Meng Zhou; Shiyong Huang; Haimeng Li; Zhenzhen Wang; Zheng Qiao; C. A. Kletzing; J. R. Wygant

Utilizing the data from the magnetometer instrument which is a part of the Electric and Magnetic Field Instrument Suite and Integrated Science instrument suite on board the Van Allen Probe A from September 2012 to April 2014, when the apogee of the satellite has passed all the magnetic local time (MLT) sectors, we obtain the statistical distribution characteristics of electromagnetic ion cyclotron (EMIC) waves in the inner magnetosphere over all magnetic local times from L = 3 to L = 6. Compared with the previous statistical results about EMIC waves, the occurrence rates of EMIC waves distribute relatively uniform in the MLT sectors in lower L shells. On the other hand, in higher L shells, there are indeed some peaks of the occurrence rate for the EMIC waves, especially in the noon, dusk, and night sectors. EMIC waves appear at lower L shells in the dawn sector than in other sectors. In the lower L shells (L   4) the occurrence rates of EMIC waves are most significant in the dusk sector, implying the important role of the plasmapause or plasmaspheric plume in generating EMIC waves. We have also investigated the distribution characteristics of the hydrogen band and the helium band EMIC waves. Surprisingly, in the inner magnetosphere, the hydrogen band EMIC waves occur more frequently than the helium band EMIC waves. Both of them have peaks of occurrence rate in noon, dusk, and night sectors, and the hydrogen band EMIC waves have more obvious peaks than the helium band EMIC waves in the night sector, while the helium band EMIC waves are more concentrated than the hydrogen band EMIC waves in the dusk sector. Both of them occur significantly in the noon sector, which implies the important role of the solar wind dynamic pressure.


Journal of Geophysical Research | 2012

Characteristics of precipitating energetic ions/electrons associated with the wave-particle interaction in the plasmaspheric plume

Zhigang Yuan; Ying Xiong; Dedong Wang; Ming Li; Xiaohua Deng; A. G. Yahnin; Tero Raita; Jingfang Wang

In this paper, we present characteristics of precipitating energetic ions/electrons associated with the wave-particle interaction in the plasmaspheric plume during the geomagnetic storm on July 18, 2005 with observations of the NOAA15 NOAA16, IMAGE satellites and Finnish network of search coil magnetometers. Conjugate observations of the NOAA15 satellite and the Finnish network of search coil magnetometers have demonstrated that a sharp enhancement of the precipitating ion flux is a result of ring current (RC) ions scattered into the loss cone by EMIC waves. Those precipitating RC ions lead to a detached subauroral proton arc observed by the IMAGE FUV. In addition, with observations of NOAA15 and NOAA16, the peak of precipitating electron flux was equatorward to that of precipitating proton flux, which is in agreement with the region separation of ELF hiss and EMIC waves observed by the Cluster C1 in the Yuan et al. (2012) companion paper. In combination with the result of the companion paper, we demonstrate the link between the wave activities (ELF hiss, EMIC waves) in plasmaspheric plumes and energetic ion/electron precipitation at ionospheric altitudes. Therefore, it is an important characteristic of the plasmaspheric plumes-RC-ionosphere interaction during a geomagnetic storm that the precipitation of energetic protons is latitudinally separated from that of energetic electrons.


Journal of Geophysical Research | 2015

Electromagnetic energy conversion at dipolarization fronts: Multispacecraft results

S. Y. Huang; H. S. Fu; Zhigang Yuan; M. Zhou; Song Fu; X. H. Deng; W. J. Sun; Y. Pang; Dedong Wang; Huimin Li; Xiongdong Yu

Dipolarization fronts (DFs) are believed to play important roles in transferring plasmas, magnetic fluxes, and energies in the magnetotail. Using the Cluster observations in 2003, electromagnetic energy conversion at the DFs is investigated by case and statistical studies. The case study indicates strongest energy conversion at the DF. The statistical study shows the similar features that the energy of the fields can be significantly transferred to the plasmas (load, J · E > 0) at the DFs. These results are consistent with some recent simulations. Examining the electromagnetic fluctuations at the DFs, we suggest that the wave activities around the lower hybrid frequency may play an important role in the energy dissipation.


Geophysical Research Letters | 2016

MMS Observations of Ion-scale Magnetic Island in the Magnetosheath Turbulent Plasma

S. Y. Huang; F. Sahraoui; A. Retinò; O. Le Contel; Zhigang Yuan; A. Chasapis; N. Aunai; H. Breuillard; Xiaohua Deng; M. Zhou; Huishan Fu; Ye Pang; Dedong Wang; R. B. Torbert; K. A. Goodrich; R. E. Ergun; Y. V. Khotyaintsev; Per-Arne Lindqvist; C. T. Russell; R. J. Strangeway; W. Magnes; K. Bromund; H. K. Leinweber; F. Plaschke; Brian J. Anderson; C. J. Pollock; B. L. Giles; T. E. Moore; J. L. Burch

In this letter, first observations of ion-scale magnetic island from the Magnetospheric Multiscale mission in the magnetosheath turbulent plasma are presented. The magnetic island is characterized ...


Journal of Geophysical Research | 2016

In situ evidence of the modification of the parallel propagation of EMIC waves by heated He+ ions

Zhigang Yuan; Xiongdong Yu; Dedong Wang; Shiyong Huang; Haimeng Li; Tao Yu; Zheng Qiao; J. R. Wygant; Herbert O. Funsten

With observations of the Van Allen Probe B, we report in situ evidence of the modification of the parallel propagating electromagnetic ion cyclotron (EMIC) waves by heated He+ ions. In the outer boundary of the plasmasphere, accompanied with the He+ ion heating, the frequency bands of H+ and He+ for EMIC waves merged into each other, leading to the disappearance of a usual stop band between the gyrofrequency of He+ ions (ΩHe+) and the H+ cut-off frequency (ωH+co) in the cold plasma. Moreover, the dispersion relation for EMIC waves theoretically calculated with the observed plasma parameters also demonstrates that EMIC waves can indeed parallel propagate across ΩHe+. Therefore, the paper provides an in situ evidence of the modification of the parallel propagation of EMIC waves by heated He+ ions.


Journal of Geophysical Research | 2016

Two types of whistler waves in the hall reconnection region

S. Y. Huang; Huishan Fu; Zhigang Yuan; Andris Vaivads; Yuri V. Khotyaintsev; A. Retinò; M. Zhou; D. B. Graham; K. Fujimoto; F. Sahraoui; Xiaohua Deng; Binbin Ni; Y. Pang; Song Fu; Dedong Wang; X. Zhou

Whistler waves are believed to play an important role during magnetic reconnection. Here we report the near-simultaneous occurrence of two types of the whistler-mode waves in the magnetotail Hall r ...


Journal of Geophysical Research | 2014

Influence of precipitating energetic ions caused by EMIC waves on the subauroral ionospheric E region during a geomagnetic storm

Zhigang Yuan; Ying Xiong; Haimeng Li; Shiyong Huang; Zheng Qiao; Zhenzhen Wang; Meng Zhou; Dedong Wang; Xiaohua Deng; Tero Raita; Jingfang Wang

In this paper, we have presented the influence of precipitating energetic ions caused by electromagnetic ion cyclotron (EMIC) waves on the subauroral ionospheric E region during a geomagnetic storm on 8 March 2008 with observations of the Meteorological Operational (METOP-02) of the Polar Orbiting Environmental Satellites (POES), a GPS receiver in Vaasa of Finland and Finnish network of search coil magnetometers. Conjugate observations of the POES METOP-02 satellite and Finnish network of search coil magnetometers have demonstrated that enhancements of the precipitating energetic ion flux within the proton anisotropic zone are attributed to the interaction between ring current (RC) ions and EMIC waves. With enhancements of the intensity of Pc1 waves observed by search coil magnetometers, the total electron content observed by the GPS receiver accordingly increased, meaning that the enhancement of the ionospheric electron density is attributed to the precipitation of RC ions caused by EMIC waves. The electron density profiles derived by the International Reference Ionosphere (IRI-2007) model and with precipitating energetic protons observed by the POES METOP-02 satellite show that the energetic proton precipitation can cause the E layer peak electron density to increase from 1.62 × 109 m−3 to 5.05 × 1011 m−3 by 2.49 orders of magnitude. In comparison with the height-integrated conductivities derived by the IRI-2007 model, the height-integrated Pedersen and Hall conductivities derived with precipitating energetic protons increase by 2.4 and 2.34 orders of magnitude, respectively. Our result suggests that precipitating energetic ions caused by EMIC waves can lead to an obvious enhancement of the electron density and conductivities in the subauroral ionospheric E region during geomagnetic storms.


Geophysical Research Letters | 2017

In situ observations of magnetosonic waves modulated by background plasma density

Zhigang Yuan; Xiongdong Yu; Shiyong Huang; Dedong Wang; Herbert O. Funsten

We report in situ observations by the Van Allen Probe mission that magnetosonic (MS) waves are clearly relevant to the background plasma number density. As the satellite moved across dense and tenuous plasma alternatively, MS waves occurred only in lower density region. As the observed protons with “ring” distributions provide free energy, local linear growth rates are calculated and show that magnetosonic waves can be locally excited in tenuous plasma. With variations of the background plasma density, the temporal variations of local wave growth rates calculated with the observed proton ring distributions show a remarkable agreement with those of the observed wave amplitude. Therefore, the paper provides a direct proof that background plasma densities can modulate the amplitudes of magnetosonic waves through controlling the wave growth rates.

Collaboration


Dive into the Dedong Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge