Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deepak Cyril D’Souza is active.

Publication


Featured researches published by Deepak Cyril D’Souza.


Biological Psychiatry | 2005

Delta-9-tetrahydrocannabinol effects in schizophrenia: Implications for cognition, psychosis, and addiction

Deepak Cyril D’Souza; Walid Abi-Saab; Steven Madonick; Kimberlee Forselius-Bielen; Anne Doersch; Gabriel Braley; Ralitza Gueorguieva; Thomas B. Cooper; John H. Krystal

BACKGROUND Recent advances in the neurobiology of cannabinoids have renewed interest in the association between cannabis and psychotic disorders. METHODS In a 3-day, double-blind, randomized, placebo-controlled study, the behavioral, cognitive, motor, and endocrine effects of 0 mg, 2.5 mg, and 5 mg intravenous Delta-9-tetrahydrocannabinol (Delta-9-THC) were characterized in 13 stable, antipsychotic-treated schizophrenia patients. These data were compared with effects in healthy subjects reported elsewhere. RESULTS Delta-9-tetrahydrocannabinol transiently increased 1) learning and recall deficits; 2) positive, negative, and general schizophrenia symptoms; 3) perceptual alterations; 4) akathisia, rigidity, and dyskinesia; 5) deficits in vigilance; and 6) plasma prolactin and cortisol. Schizophrenia patients were more vulnerable to Delta-9-THC effects on recall relative to control subjects. There were no serious short- or long-term adverse events associated with study participation. CONCLUSIONS Delta-9-tetrahydrocannabinol is associated with transient exacerbation in core psychotic and cognitive deficits in schizophrenia. These data do not provide a reason to explain why schizophrenia patients use or misuse cannabis. Furthermore, Delta-9-THC might differentially affect schizophrenia patients relative to control subjects. Finally, the enhanced sensitivity to the cognitive effects of Delta-9-THC warrants further study into whether brain cannabinoid receptor dysfunction contributes to the pathophysiology of the cognitive deficits associated with schizophrenia.


Psychopharmacology | 2006

The acute effects of cannabinoids on memory in humans: a review.

Mohini Ranganathan; Deepak Cyril D’Souza

RationaleCannabis is one of the most frequently used substances. Cannabis and its constituent cannabinoids are known to impair several aspects of cognitive function, with the most robust effects on short-term episodic and working memory in humans. A large body of the work in this area occurred in the 1970s before the discovery of cannabinoid receptors. Recent advances in the knowledge of cannabinoid receptors’ function have rekindled interest in examining effects of exogenous cannabinoids on memory and in understanding the mechanism of these effects.ObjectiveThe literature about the acute effects of cannabinoids on memory tasks in humans is reviewed. The limitations of the human literature including issues of dose, route of administration, small sample sizes, sample selection, effects of other drug use, tolerance and dependence to cannabinoids, and the timing and sensitivity of psychological tests are discussed. Finally, the human literature is discussed against the backdrop of preclinical findings.ResultsAcute administration of Δ-9-THC transiently impairs immediate and delayed free recall of information presented after, but not before, drug administration in a dose- and delay-dependent manner. In particular, cannabinoids increase intrusion errors. These effects are more robust with the inhaled and intravenous route and correspond to peak drug levels.ConclusionsThis profile of effects suggests that cannabinoids impair all stages of memory including encoding, consolidation, and retrieval. Several mechanisms, including effects on long-term potentiation and long-term depression and the inhibition of neurotransmitter (GABA, glutamate, acetyl choline, dopamine) release, have been implicated in the amnestic effects of cannabinoids. Future research in humans is necessary to characterize the neuroanatomical and neurochemical basis of the memory impairing effects of cannabinoids, to dissect out their effects on the various stages of memory and to bridge the expanding gap between the humans and preclinical literature.


European Archives of Psychiatry and Clinical Neuroscience | 2009

Cannabis and psychosis/schizophrenia: human studies

Deepak Cyril D’Souza; Richard Andrew Sewell; Mohini Ranganathan

The association between cannabis use and psychosis has long been recognized. Recent advances in knowledge about cannabinoid receptor function have renewed interest in this association. Converging lines of evidence suggest that cannabinoids can produce a full range of transient schizophrenia-like positive, negative, and cognitive symptoms in some healthy individuals. Also clear is that in individuals with an established psychotic disorder, cannabinoids can exacerbate symptoms, trigger relapse, and have negative consequences on the course of the illness. The mechanisms by which cannabinoids produce transient psychotic symptoms, while unclear may involve dopamine, GABA, and glutamate neurotransmission. However, only a very small proportion of the general population exposed to cannabinoids develop a psychotic illness. It is likely that cannabis exposure is a “component cause” that interacts with other factors to “cause” schizophrenia or a psychotic disorder, but is neither necessary nor sufficient to do so alone. Nevertheless, in the absence of known causes of schizophrenia, the role of component causes remains important and warrants further study. Dose, duration of exposure, and the age of first exposure to cannabinoids may be important factors, and genetic factors that interact with cannabinoid exposure to moderate or amplify the risk of a psychotic disorder are beginning to be elucidated. The mechanisms by which exposure to cannabinoids increase the risk for developing a psychotic disorder are unknown. However, novel hypotheses including the role of cannabinoids on neurodevelopmental processes relevant to psychotic disorders are being studied.


Frontiers in Psychiatry | 2014

Gone to pot - a review of the association between cannabis and psychosis

Rajiv Radhakrishnan; Samuel T. Wilkinson; Deepak Cyril D’Souza

Cannabis is the most commonly used illicit drug worldwide, with ~5 million daily users worldwide. Emerging evidence supports a number of associations between cannabis and psychosis/psychotic disorders, including schizophrenia. These associations-based on case-studies, surveys, epidemiological studies, and experimental studies indicate that cannabinoids can produce acute, transient effects; acute, persistent effects; and delayed, persistent effects that recapitulate the psychopathology and psychophysiology seen in schizophrenia. Acute exposure to both cannabis and synthetic cannabinoids (Spice/K2) can produce a full range of transient psychotomimetic symptoms, cognitive deficits, and psychophysiological abnormalities that bear a striking resemblance to symptoms of schizophrenia. In individuals with an established psychotic disorder, cannabinoids can exacerbate symptoms, trigger relapse, and have negative consequences on the course of the illness. Several factors appear to moderate these associations, including family history, genetic factors, history of childhood abuse, and the age at onset of cannabis use. Exposure to cannabinoids in adolescence confers a higher risk for psychosis outcomes in later life and the risk is dose-related. Individuals with polymorphisms of COMT and AKT1 genes may be at increased risk for psychotic disorders in association with cannabinoids, as are individuals with a family history of psychotic disorders or a history of childhood trauma. The relationship between cannabis and schizophrenia fulfills many but not all of the standard criteria for causality, including temporality, biological gradient, biological plausibility, experimental evidence, consistency, and coherence. At the present time, the evidence indicates that cannabis may be a component cause in the emergence of psychosis, and this warrants serious consideration from the point of view of public health policy.


JAMA Psychiatry | 2015

Deficits in Prefrontal Cortical and Extrastriatal Dopamine Release in Schizophrenia: A Positron Emission Tomographic Functional Magnetic Resonance Imaging Study

Mark Slifstein; Elsmarieke van de Giessen; Jared X. Van Snellenberg; Judy L. Thompson; Rajesh Narendran; Roberto Gil; Elizabeth Hackett; Ragy R. Girgis; Najate Ojeil; Holly Moore; Deepak Cyril D’Souza; Robert T. Malison; Yiyun Huang; Keunpoong Lim; Nabeel Nabulsi; Richard E. Carson; Jeffrey A. Lieberman; Anissa Abi-Dargham

IMPORTANCE Multiple lines of evidence suggest a deficit in dopamine release in the prefrontal cortex (PFC) in schizophrenia. Despite the prevalence of the concept of prefrontal cortical hypodopaminergia in schizophrenia, in vivo imaging of dopamine release in the PFC has not been possible until now, when the validity of using the positron emission tomographic D2/3 radiotracer carbon 11-labeled FLB457 in combination with the amphetamine paradigm was clearly established. OBJECTIVES To (1) test amphetamine-induced dopamine release in the dorsolateral PFC (DLPFC) in drug-free or drug-naive patients with schizophrenia (SCZ) and healthy control (HC) individuals matched for age, sex, race/ethnicity, and familial socioeconomic status;(2) test blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging activation during a working memory task in the same participants; and (3) examine the relationship between positron emission tomographic and functional magnetic resonance imaging outcome measures. DESIGN, SETTING AND PARTICIPANTS Positron emission tomographic imaging with carbon 11-labeled FLB457 before and following 0.5 mg/kg of amphetamine by mouth. Blood oxygenation level-dependent functional magnetic resonance imaging during the self-ordered working memory task. Twenty patients with schizophrenia recruited from the inpatient and outpatient research facilities at New York State Psychiatric Institute and 21 healthy control individuals participated, and data were acquired between June 16, 2011, and February 25, 2014. MAIN OUTCOMES AND MEASURE The percentage change in binding potential (∆BPND) in the DLPFC following amphetamine, BOLD activation during the self-ordered working memory task compared with the control task, and the correlation between these 2 outcome measures. RESULTS We observed significant differences in the effect of amphetamine on DLPFC BPND (mean [SD], ∆BPND in HC: -7.5% [11%]; SCZ: +1.8% [11%]; P = .01); a generalized blunting in dopamine release in SCZ involving most extrastriatal regions and the midbrain; and a significant association between ∆BPND and BOLD activation in the DLPFC in the overall sample including patients with SCZ and HC individuals. CONCLUSIONS AND RELEVANCE To our knowledge, these results provide the first in vivo evidence for a deficit in the capacity for dopamine release in the DLPFC in SCZ and suggest a more widespread deficit extending to many cortical and extrastriatal regions including the midbrain. This contrasts with the well-replicated excess in dopamine release in the associative striatum in SCZ and suggests a differential regulation of striatal dopamine release in associative striatum vs extrastriatal regions. Furthermore, dopamine release in the DLPFC relates to working memory-related activation of this region, suggesting that blunted release may affect frontal cortical function.


Psychopharmacology | 2013

Spicing things up: synthetic cannabinoids

Max Spaderna; Peter H. Addy; Deepak Cyril D’Souza

RationaleRecently, products containing synthetic cannabinoids, collectively referred to as Spice, are increasingly being used recreationally.ObjectivesThe availability, acute subjective effects—including self-reports posted on Erowid—laboratory detection, addictive potential, and regulatory challenges of the Spice phenomenon are reviewed.ResultsSpice is sold under the guise of potpourri or incense. Unlike delta-9-tetrahydrocannabinol, the synthetic cannabinoids present in Spice are high-potency, high-efficacy, cannabinoid receptor full agonists. Since standard urine toxicology does not test for the synthetic cannabinoids in Spice, it is often used by those who want to avoid detection of drug use. These compounds have not yet been subjected to rigorous testing in humans. Acute psychoactive effects include changes in mood, anxiety, perception, thinking, memory, and attention. Adverse effects include anxiety, agitation, panic, dysphoria, psychosis, and bizarre behavior. Psychosis outcomes associated with Spice provide additional data linking cannabinoids and psychosis. Adverse events necessitating intervention by Poison Control Centers, law enforcement, emergency responders, and hospitals are increasing. Despite statutes prohibiting the manufacture, distribution, and sale of Spice products, manufacturers are replacing banned compounds with newer synthetic cannabinoids that are not banned.ConclusionsThere is an urgent need for better research on the effects of synthetic cannabinoids to help clinicians manage adverse events and to better understand cannabinoid pharmacology in humans. The reported psychosis outcomes associated with synthetic cannabinoids contribute to the ongoing debate on the association between cannabinoids and psychosis. Finally, drug detection tests for synthetic cannabinoids need to become clinically available.


Biological Psychiatry | 2000

IV Glycine and oral D-cycloserine effects on plasma and CSF amino acids in Healthy humans

Deepak Cyril D’Souza; Roberto Gil; Karyn Cassello; Kristen Morrissey; D. Abi-Saab; Jonathan White; Robert Sturwold; Alexandre Bennett; Laurence P. Karper; Edward Zuzarte; Dennis S. Charney; John H. Krystal

BACKGROUND The amino acid glycine, modulates neurotransmission via actions at GLY-A receptor and GLY-B receptor. The latter are coagonist sites associated with N-Methyl-D-Aspartate (NMDA) glutamate receptors. The central bioavailability of peripherally administered glycine has not been adequately characterized in humans. METHODS Healthy human subjects were administered either oral D-cycloserine (50 mg or placebo) and intravenous glycine (saline, 100 mg/kg or 200 mg/kg) in random order over 4 test days under double-blind conditions. Cerebrospinal fluid was collected by lumbar puncture performed on the first test day was analyzed to determine amino acid levels. The acoustic startle response was measured on the second test day. RESULTS Intravenous glycine dose-dependently increased both serum and CSF glycine and serine levels. Neither glycine nor DCS produced any significant effects on behavior, cognition or the acoustic startle response. Neither IV glycine nor DCS were associated with any toxicity. CONCLUSIONS Thus, peripheral glycine administration raised CSF glycine levels without producing any clear central nervous system effects. Glycine and D-cycloserine did not worsen cognitive test performance and did not induce behavioral symptoms on their own. The possibility that glycine and D-cycloserine enhanced cognitive test performance cannot be excluded given the psychometric limitations of the test battery.


Current Addiction Reports | 2014

Impact of Cannabis Use on the Development of Psychotic Disorders

Samuel T. Wilkinson; Rajiv Radhakrishnan; Deepak Cyril D’Souza

The link between cannabis use and psychosis comprises three distinct relationships: acute psychosis associated with cannabis intoxication; acute psychosis that lasts beyond the period of acute intoxication; and persistent psychosis not time-locked to exposure. Experimental studies reveal that cannabis, delta-9-tetrahydrocannabinol (THC) and synthetic cannabinoids reliably produce transient positive, negative, and cognitive symptoms in healthy volunteers. Case studies indicate that cannabinoids can induce acute psychosis that lasts beyond the period of acute intoxication but resolves within a month. Exposure to cannabis in adolescence is associated with a risk for later psychotic disorder in adulthood; this association is consistent, temporally related, shows a dose response, and is biologically plausible. However, cannabis is neither necessary nor sufficient to cause a persistent psychotic disorder. More likely, it is a component cause that interacts with other factors to result in psychosis. The link between cannabis and psychosis is moderated by age at onset of cannabis use, childhood abuse, and genetic vulnerability. While more research is needed to better characterize the relationship between cannabinoid use and the onset and persistence of psychosis, clinicians should be mindful of the potential risk of psychosis, especially in vulnerable populations, including adolescents and those with a psychosis diathesis.


Psychopharmacology | 2006

Greater vulnerability to the amnestic effects of ketamine in males

Celia J. A. Morgan; Edward Perry; Hyung-Sang Cho; John H. Krystal; Deepak Cyril D’Souza

RationaleGender differences both in response to ketamine in animals and general cognitive functioning in humans have been observed and suggested to be related to modulatory effects of sex hormones on N-methyl-d-aspartate receptor (NMDA-R) functioning.ObjectivesThe current study aimed to determine whether there were gender differences in response to ketamine in humans.MethodsBehavioral data including positive and negative symptoms (Brief Psychiatric Rating Scale), perceptual alterations (Clinician-Administered Dissociative States Scale, CADSS), and “high” and “anxiety” states (Visual Analog Scale) from 295 subjects who participated in a total of 11 placebo-controlled ketamine studies were analyzed. In a subset of subjects, memory (Hopkins Verbal Learning Task: HVLT, n=108) and attention (continuous performance task, n=177) data were also analyzed.ResultsMale participants showed a greater performance decrement on the HVLT after ketamine administration compared to women. Men also reported a greater subjective sense of memory impairment on a CADSS subscale. No other gender differences in behavioral or cognitive measures were observed.ConclusionsMen showed a greater vulnerability to the amnestic effects of ketamine than women. Possible explanations of these findings are neuroanatomical and cognitive differences in processing of words in men and women and interactions between sex hormones and NMDA-R function.


JAMA | 2014

Problems With the Medicalization of Marijuana

Samuel T. Wilkinson; Deepak Cyril D’Souza

“Medical” marijuana is approved in 21 states and the District of Columbia for numerous conditions, including glaucoma, Crohn disease, posttraumatic stress disorder, epilepsy, Alzheimer disease, and chemotherapy-induced nausea and vomiting. Both the number of states and the number of approved indications for medical marijuana are expected to increase. Physicians will bear the responsibility of prescribing marijuana and thus have an obligation to understand the issues involved in its “medicalization.”

Collaboration


Dive into the Deepak Cyril D’Souza's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge