Deepak M. Sampathu
University of Pennsylvania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Deepak M. Sampathu.
Acta Neuropathologica | 2011
Ian R. Mackenzie; Manuela Neumann; Atik Baborie; Deepak M. Sampathu; Daniel du Plessis; Evelyn Jaros; Robert H. Perry; John Q. Trojanowski; David Mann; Virginia M.-Y. Lee
In 2006, two papers were published, each describing pathological heterogeneity in cases of frontotemporal lobar degeneration (FTLD) with ubiquitin-positive, tau-negative inclusions (FTLD-U) [7, 11]. In both studies, large series of cases were evaluated and the investigators felt that they could recognize three distinct histological patterns, based on the morphology and anatomical distribution of ubiquitin immunoreactive neuronal inclusions. The findings of Sampathu et al. were further supported by differential labelling of the pathology, using a panel of novel monoclonal antibodies; whereas, Mackenzie et al. found relatively specific clinicopathological correlations. Most importantly, the pathological features that defined the subtypes in these two studies were almost identical, providing powerful validation of the results. However, because the studies were conducted simultaneously and independently, the numbering of the subtypes, used in the respective papers, did not match (Table 1). Table 1 Proposed new classification system for FTLD-TDP pathology, compared with existing systems Shortly thereafter, further work by one of the two groups led to the identification of the transactive response DNA-binding protein with Mr 43 kD (TDP-43) as the ubiquitinated pathological protein in most cases of FTLD-U as well as the majority of sporadic amyotrophic lateral sclerosis (ALS) and some familial ALS [10]. It was subsequently confirmed that most FTLD-U cases had TDP-43 pathology and that the same pathological patterns could be recognized based on the results of TDP-43 immunohistochemistry (IHC) [1, 2]. By this time, a fourth FTLD-U subtype had been described, specifically associated with the familial syndrome of inclusion body myopathy with Paget’s disease of bone and frontotemporal dementia (IBMPFD) caused by mutations in the valosin-containing protein (VCP) gene [4], and this was also shown to have TDP-43 pathology [9]. As a result, cases of FTLD with TDP-43 pathology are now designated as FTLD-TDP and the term FTLD-U is no longer recommended [8]. The two classification systems for FTLD-U/FTLD-TDP have now gained wide acceptance and have repeatedly been validated by the discovery of additional clinical, genetic and pathological correlations. However, the continued use of two discordant numbering systems proves to be an ongoing source of confusion within the field. Previous attempts, by other groups of authors, to promote one classification over the other have not been successful. To resolve this issue, the principal authors of the original two papers are now proposing a new classification for FTLD-TDP pathology, the sole purpose of which is to provide a single harmonized system that replaces the two currently in use. In developing this new classification, the following principles were adhered to: (1) different pathological subtypes are designated by letters to help distinguish this from the pre-existing number-based systems, (2) the order of subtypes should not exactly match either of the previous systems to avoid any apparent bias, and (3) the order of the subtypes should be based on their relative frequency, with “A” being the most common. The result is summarized in Table 1. Type A is equivalent to type 1 of Mackenzie et al. and type 3 of Sampathu et al., being characterized by numerous short dystrophic neurites (DN) and crescentic or oval neuronal cytoplasmic inclusions (NCI), concentrated primarily in neocortical layer 2. Moderate numbers of lentiform neuronal intranuclear inclusions (NII) are also a common but inconsistent feature of this subtype. Type B matches Mackenzie et al. type 3 and Sampathu et al. type 2, with moderate numbers of NCI, throughout all cortical layers, but very few DN. Type C is the same as Mackenzie et al. type 2 and Sampathu et al. type 1, having a predominance of elongated DN in upper cortical layers, with very few NCI. Finally, Type D refers to the pathology associated with IBMPFD caused by VCP mutations, characterized by numerous short DN and frequent lentiform NII. Based on the results of more recent studies, there are a number of other modifications that we could have considered incorporating into this new system. Additional pathological subtypes could be added; for instance, to describe the TDP-43 pathology that is found in the mesial temporal lobe in a high proportion of cases of Alzheimer’s disease and most other common neurodegenerative conditions [3]. The pathological criteria for each of the subtypes could be expanded to include characteristic findings in subcortical regions [5, 6]. The description of the pathological features could be modified to take into account the greater sensitivity and specificity of TDP-43 IHC, which may demonstrate additional findings, not recognized with the ubiquitin immunostaining techniques upon which the original classifications were based (such as neuronal “pre-inclusions”) [2]. Although these and other recent findings represent important advances in our understanding of FTLD-TDP, most have not yet been broadly replicated or completely defined. Therefore, in order to make the transition to a new classification as simple and widely acceptable as possible and, most importantly, to allow for direct translation with the currently existing systems, we are not proposing any other significant changes, beyond the coding of the subtypes. In summary, we believed that adoption of a single harmonized system for the classification of FTLD-TDP neuropathology would greatly improve communication within the rapidly advancing field of FTLD diagnosis and research. Future attempts to resolve any outstanding issues related to the practical implementation and interpretation of FTLD pathological classification should also benefit. As indicated by their inclusion as co-authors on this paper, this proposal has received the unanimous support of all of the neuropathologists involved in the original two studies [7, 11].
Acta Neuropathologica | 2007
Linda K. Kwong; Manuela Neumann; Deepak M. Sampathu; Virginia M.-Y. Lee; John Q. Trojanowski
The rapid confirmation of the initial report by Neumann et al. (Science 314:130–133, 2006) that transactive response (TAR)-DNA-binding protein 43 (TDP-43) is the major disease protein linking frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) with and without motor neuron disease (MND) as well as amyotrophic lateral sclerosis (ALS) implies that TDP-43 proteinopathy underlies major forms of sporadic as well as familial FTLD and ALS. Not only was the identity of the ubiquitinated proteins that accumulate in neurons and glia of these disorders finally resolved, but it also was shown that pathologic TDP-43 was hyperphosphorylated, ubiquitinated and cleaved to generate C-terminal fragments in affected brain and spinal cord of FTLD-U and ALS. This review summarizes the growing evidence that TDP-43 proteinopathy is the common pathologic substrate linking FTLD and ALS, and it considers the implications of these findings for developing better strategies to diagnose and treat these neurodegenerative disorders.
American Journal of Pathology | 2003
Deepak M. Sampathu; Benoit I. Giasson; Aaron C. Pawlyk; John Q. Trojanowski; Virginia M.-Y. Lee
α-Synucleinopathies, including Parkinsons disease, dementia with Lewy bodies, and multiple system atrophy, are neurodegenerative disorders in which abnormal inclusions containing α-synuclein accumulate in selectively vulnerable neurons and glia. In this report, immunohistochemistry demonstrates ubiquitin in subsets of α-synuclein inclusions in dementia with Lewy bodies and multiple system atrophy. Biochemistry demonstrates that α-synuclein in the sodium dodecyl sulfate-soluble fractions of diseased brains is ubiquitinated, with mono- and di-ubiquitinated species predominating over polyubiquitinated forms. Similar immunohistochemical and biochemical characteristics were observed in an A53T mutant human α-synuclein transgenic mouse model of neurodegenerative α-synucleinopathies. Furthermore, in vitro ubiquitination of α-synuclein fibrils recapitulated the pattern of α-synuclein ubiquitination observed in human disease and the A53T α-synuclein mouse model. These results suggest that ubiquitination of α-synuclein is not required for inclusion formation and follows the fibrillization of α-synuclein.
Journal of Biological Chemistry | 2003
Aaron C. Pawlyk; Benoit I. Giasson; Deepak M. Sampathu; Francisco A. Perez; Kah-Leong Lim; Valina L. Dawson; Ted M. Dawson; Richard D. Palmiter; John Q. Trojanowski; Virginia M.-Y. Lee
Autosomal recessive juvenile parkinsonism is a movement disorder associated with the degeneration of dopaminergic neurons in substantia nigra pars compacta. The loss of functional parkin caused by parkin gene mutations is the most common single cause of juvenile parkinsonism. Parkin has been shown to aid in protecting cells from endoplasmic reticulum and oxidative stressors presumably due to ubiquitin ligase activity of parkin that targets proteins for proteasomal degradation. However, studies on parkin have been impeded because of limited reagents specific for this protein. Here we report the generation and characterization of a panel of parkin-specific monoclonal antibodies. Biochemical analyses indicate that parkin is present only in the high salt-extractable fraction of mouse brain, whereas it is present in both the high salt-extractable and RIPA-resistant, SDS-extractable fraction in young human brain. Parkin is present at decreased levels in the high salt-extractable fraction and at increased levels in the SDS-extractable fraction from aged human brain. This shift in the extractability of parkin upon aging is seen in humans but not in mice, demonstrating species-specific differences in the biochemical characteristics of murine versus human parkin. Finally, by using these highly specific anti-parkin monoclonal antibodies, it was not possible to detect parkin in α-synuclein-containing lesions in α-synucleinopathies, thereby challenging prior inferences about the role of parkin in movement disorders other than autosomal recessive juvenile parkinsonism.
Journal of Neurochemistry | 2005
Marc C. Meulener; Charles L. Graves; Deepak M. Sampathu; Cecilia E. Armstrong-Gold; Nancy M. Bonini; Benoit I. Giasson
DJ‐1 is a ubiquitously expressed protein involved in various cellular processes including cell proliferation, RNA‐binding, and oxidative stress. Mutations that result in loss of DJ‐1 function lead to early onset parkinsonism in humans, and DJ‐1 protein is present in pathological lesions of several tauopathies and synucleinopathies. In order to further investigate the role of DJ‐1 in human neurodegenerative disease, we have generated novel polyclonal and monoclonal antibodies to human DJ‐1 protein. We have characterized these antibodies and confirmed the pathological co‐localization of DJ‐1 with other neurodegenerative disease‐associated proteins, as well as the decrease in DJ‐1 solubility in disease tissue. In addition, we report the presence of DJ‐1 in a large molecular complex (> 2000 kDa), and provide evidence for an interaction between endogenous DJ‐1 and α‐synuclein in normal and diseased tissue. These findings provide new avenues towards the study of DJ‐1 function and how loss of its activity may lead to parkinsonism. Furthermore, our results provide further evidence for the interplay between neurodegenerative disease‐associated proteins.
Experimental Neurology | 2000
James E. Galvin; Michio Nakamura; Tracy K. McIntosh; Kathryn E. Saatman; Deepak M. Sampathu; Ramesh Raghupathi; Virginia M.-Y. Lee; John Q. Trojanowski
Several neurodegenerative disorders are characterized by filamentous inclusions in neurons that selectively degenerate. The role these inclusions play in neuron degeneration is unclear, but this issue can be investigated experimentally in relevant animal models. The NFH/LacZ transgenic (TG) mice overexpress the high-molecular-weight neurofilament (NF) subunit (NFH) fused to beta-galactosidase, and these hybrid proteins aggregate into NF-rich, filamentous neuronal cytoplasmic inclusions (NCIs) that have been implicated in the progressive, age-dependent degeneration in subsets of affected neurons. Thus, these TG mice recapitulate some of the key pathology of neurodegenerative disorders with intraneuronal inclusions. To determine if the NCIs compromise neuron survival following traumatic brain injury (TBI), 3- to 6-month old TG and wild-type (WT) mice were subjected to TBI or sham injury. At 2 weeks post-TBI, the TG group showed increased TUNEL staining and activated caspase-3 immunoreactivity in cells of cerebral cortex, adjacent white matter, and hippocampus underlying the injury site, relative to control mice, but this labeling decreased at 4 weeks and was minimal thereafter. Compared to control mice, by 8 weeks postinjury, the TG mice showed a marked decrease in neuron density and increased gliosis in the hippocampal dentate gyrus and CA3 region as well as in the lateral thalamus, while the few remaining CA3 neurons exhibited cytoskeletal alterations, decreased synaptic protein immunoreactivity, and dissolution of NCIs. The more profound long-term neurodegenerative sequelae of TBI in the NFH/LacZ mice compared to WT mice suggest that the presence of intraneuronal inclusions may impair the recovery and long-term viability of injured neurons.
Science | 2006
Manuela Neumann; Deepak M. Sampathu; Linda K. Kwong; Adam C. Truax; Matthew Micsenyi; Thomas T. Chou; Jennifer Bruce; Theresa Schuck; Murray Grossman; Christopher M. Clark; Leo McCluskey; Bruce L. Miller; Eliezer Masliah; Ian R. Mackenzie; Howard Feldman; Wolfgang Feiden; Hans A. Kretzschmar; John Q. Trojanowski; Virginia M.-Y. Lee
American Journal of Pathology | 2006
Deepak M. Sampathu; Manuela Neumann; Linda K. Kwong; Thomas T. Chou; Matthew Micsenyi; Adam C. Truax; Jennifer Bruce; Murray Grossman; John Q. Trojanowski; Virginia M.-Y. Lee
JAMA Neurology | 2007
Manuela Neumann; Linda K. Kwong; Deepak M. Sampathu; John Q. Trojanowski; Virginia M.-Y. Lee
Biochemistry | 2002
Benoit I. Giasson; Deepak M. Sampathu; Christina A. Wilson; Vanessa Vogelsberg-Ragaglia; Walter E. Mushynski; Virginia M.-Y. Lee