Deepak Nand
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Deepak Nand.
Angewandte Chemie | 2012
Marie Renault; Shane Pawsey; Martine P. Bos; Eline J. Koers; Deepak Nand; Ria Tommassen‐van Boxtel; Melanie Rosay; Jan Tommassen; Werner E. Maas; Marc Baldus
Solid-state NMR (ssNMR) spectroscopy offers increasing possibilities to study complex biomolecules at the atomic level. An important target area concerns membrane-associated proteins, which can be investigated by ssNMR methods after reconstitution in synthetic bilayers. While such preparations allow examination of functional aspects of the protein of interest, the influence of the native cellular environment on protein structure and function cannot be monitored. Very recently, we introduced a general approach aimed at determining complex molecular structures, including integral membrane proteins, in their native cellular environment by ssNMR under magic-angle-spinning (MAS) conditions. Using dedicated sample-preparation routes, we demonstrated that high-resolution ssNMR spectra can be obtained on uniformly C,N-labeled preparations of Escherichia coli whole cells (WC) and cell envelopes (CE). Both CE and WC morphology are preserved under standard ssNMR experimental conditions and the corresponding C and N crosspolarization (CP-MAS) spectra are invariant over time. However, with increasing levels of molecular complexity, especially in the case of WC preparations, spectroscopic sensitivity becomes a critical factor. In recent years, dynamic nuclear polarization (DNP) has developed into a routine tool to increase the sensitivity of multidimensional ssNMR. DNP enhancements of up to 148fold have been obtained on micro/nanocrystalline biomolecular samples, including an amyloidogenic peptide and a deuterated protein, 6] while enhancements between 18and 46fold have been reported for membrane-embedded polypeptides, purple membrane preparations, and bacteriophages. Here, we investigated the use of DNP to conduct ssNMR studies on C,N-labeled preparations of E. coli WC overproducing the integral outer membrane protein PagL. In Figure 1, we compared C and N CP-MAS spectra of uniformly C,N-labeled WC with the CE isolated from PagL-overproducing E. coli cells, recorded in the presence and absence of microwave irradiation. At higher temperatures (271 K), ssNMR spectra of the E. coli CE had previously revealed atomic details of PagL as well as endogenous membrane-associated macromolecules, including the major lipoprotein Lpp and non-proteinaceous components such as lipopolysaccharides (LPS), peptidoglycans (PG), and phospholipids. Under low-temperature (LT) DNP conditions, we observed significant DNP enhancement factors for both preparations in spectral regions characteristic for protein signals (aliphatic C resonances: d = 50–55 ppm, amide N backbone and side-chain resonances at about 120 and 80–30 ppm) as well as for C signals of endogenous
Journal of Molecular Biology | 2011
Robert Schneider; Miria C. Schumacher; Henrik Mueller; Deepak Nand; Volker Klaukien; Henrike Heise; Dietmar Riedel; Gerhard Wolf; Elmar Behrmann; Stefan Raunser; Ralf Seidel; Martin Engelhard; Marc Baldus
Protein aggregation via polyglutamine stretches occurs in a number of severe neurodegenerative diseases such as Huntingtons disease. We have investigated fibrillar aggregates of polyglutamine peptides below, at, and above the toxicity limit of around 37 glutamine residues using solid-state NMR and electron microscopy. Experimental data are consistent with a dry fibril core of at least 70-80 Å in width for all constructs. Solid-state NMR dipolar correlation experiments reveal a largely β-strand character of all samples and point to tight interdigitation of hydrogen-bonded glutamine side chains from different sheets. Two approximately equally frequent populations of glutamine residues with distinct sets of chemical shifts are found, consistent with local backbone dihedral angles compensating for β-strand twist or with two distinct sets of side-chain conformations. Peptides comprising 15 glutamine residues are present as single extended β-strands. Data obtained for longer constructs are most compatible with a superpleated arrangement with individual molecules contributing β-strands to more than one sheet and an antiparallel assembly of strands within β-sheets.
Journal of the American Chemical Society | 2013
Markus Weingarth; Alexander V. Prokofyev; E.A.W. van der Cruijsen; Deepak Nand; Alexandre M. J. J. Bonvin; Olaf Pongs; Marc Baldus
We have investigated specific lipid binding to the pore domain of potassium channels KcsA and chimeric KcsA-Kv1.3 on the structural and functional level using extensive coarse-grained and atomistic molecular dynamics simulations, solid-state NMR, and single channel measurements. We show that, while KcsA activity is critically modulated by the specific and cooperative binding of anionic nonannular lipids close to the channels selectivity filter, the influence of nonannular lipid binding on KcsA-Kv1.3 is much reduced. The diminished impact of specific lipid binding on KcsA-Kv1.3 results from a point-mutation at the corresponding nonannular lipid binding site leading to a salt-bridge between adjacent KcsA-Kv1.3 subunits, which is conserved in many voltage-gated potassium channels and prevents strong nonannular lipid binding to the pore domain. Our findings elucidate how protein-lipid and protein-protein interactions modulate K(+) channel activity. The combination of MD, NMR, and functional studies as shown here may help to dissect the structural and dynamical processes that are critical for the functioning of larger membrane proteins, including Kv channels in a membrane setting.
Proceedings of the National Academy of Sciences of the United States of America | 2013
E.A.W. van der Cruijsen; Deepak Nand; Markus Weingarth; Alexander V. Prokofyev; Sönke Hornig; Abhishek Cukkemane; Alexandre M. J. J. Bonvin; Stefan Becker; Raymond E. Hulse; Eduardo Perozo; Olaf Pongs; Marc Baldus
Potassium (i.e., K+) channels allow for the controlled and selective passage of potassium ions across the plasma membrane via a conserved pore domain. In voltage-gated K+ channels, gating is the result of the coordinated action of two coupled gates: an activation gate at the intracellular entrance of the pore and an inactivation gate at the selectivity filter. By using solid-state NMR structural studies, in combination with electrophysiological experiments and molecular dynamics simulations, we show that the turret region connecting the outer transmembrane helix (transmembrane helix 1) and the pore helix behind the selectivity filter contributes to K+ channel inactivation and exhibits a remarkable structural plasticity that correlates to K+ channel inactivation. The transmembrane helix 1 unwinds when the K+ channel enters the inactivated state and rewinds during the transition to the closed state. In addition to well-characterized changes at the K+ ion coordination sites, this process is accompanied by conformational changes within the turret region and the pore helix. Further spectroscopic and computational results show that the same channel domain is critically involved in establishing functional contacts between pore domain and the cellular membrane. Taken together, our results suggest that the interaction between the K+ channel turret region and the lipid bilayer exerts an important influence on the selective passage of potassium ions via the K+ channel pore.
Journal of Biological Chemistry | 2011
David T. Hickman; María Pilar López-Deber; Dorin Mlaki Ndao; Alberto B. Silva; Deepak Nand; Maria Pihlgren; Valérie Giriens; Rime Madani; Annie St-Pierre; Hristina Karastaneva; Luitgard Nagel-Steger; Dieter Willbold; Detlev Riesner; Claude Nicolau; Marc Baldus; Andrea Pfeifer; Andreas Muhs
Synthetic peptide immunogens that mimic the conformation of a target epitope of pathological relevance offer the possibility to precisely control the immune response specificity. Here, we performed conformational analyses using a panel of peptides in order to investigate the key parameters controlling their conformation upon integration into liposomal bilayers. These revealed that the peptide lipidation pattern, the lipid anchor chain length, and the liposome surface charge all significantly alter peptide conformation. Peptide aggregation could also be modulated post-liposome assembly by the addition of distinct small molecule β-sheet breakers. Immunization of both mice and monkeys with a model liposomal vaccine containing β-sheet aggregated lipopeptide (Palm1–15) induced polyclonal IgG antibodies that specifically recognized β-sheet multimers over monomer or non-pathological native protein. The rational design of liposome-bound peptide immunogens with defined conformation opens up the possibility to generate vaccines against a range of protein misfolding diseases, such as Alzheimer disease.
Journal of Biomolecular NMR | 2012
Sabine Gradmann; Christian Ader; Ines Heinrich; Deepak Nand; Marc Dittmann; Abhishek Cukkemane; Marc van Dijk; Alexandre M. J. J. Bonvin; Martin Engelhard; Marc Baldus
We present a computational environment for Fast Analysis of multidimensional NMR DAta Sets (FANDAS) that allows assembling multidimensional data sets from a variety of input parameters and facilitates comparing and modifying such “in silico” data sets during the various stages of the NMR data analysis. The input parameters can vary from (partial) NMR assignments directly obtained from experiments to values retrieved from in silico prediction programs. The resulting predicted data sets enable a rapid evaluation of sample labeling in light of spectral resolution and structural content, using standard NMR software such as Sparky. In addition, direct comparison to experimental data sets can be used to validate NMR assignments, distinguish different molecular components, refine structural models or other parameters derived from NMR data. The method is demonstrated in the context of solid-state NMR data obtained for the cyclic nucleotide binding domain of a bacterial cyclic nucleotide-gated channel and on membrane-embedded sensory rhodopsin II. FANDAS is freely available as web portal under WeNMR (http://www.wenmr.eu/services/FANDAS).
Angewandte Chemie | 2013
Eline J. Koers; María Pilar López-Deber; Markus Weingarth; Deepak Nand; David T. Hickman; Dorin Mlaki Ndao; Pedro Reis; Anne Granet; Andrea Pfeifer; Andreas Muhs; Marc Baldus
Keywords: Alzheimers disease ; dynamic nuclear polarization ; liposomal vaccines ; NMR spectroscopy ; -amyloid peptide Reference EPFL-ARTICLE-190124doi:10.1002/anie.201303374View record in Web of Science Record created on 2013-11-04, modified on 2017-05-12
Biomolecular Nmr Assignments | 2012
A. Cukkemane; Deepak Nand; Sabine Gradmann; Markus Weingarth; Ulrich Benjamin Kaupp; Marc Baldus
Channels regulated by cyclic nucleotides are key signalling proteins in several biological pathways. The regulatory aspect is conferred by a C-terminal cyclic nucleotide-binding domain (CNBD). We report resonance assignments of the CNBD of a bacterial mlCNG channel obtained using 2D and 3D solid-state NMR under Magic-angle Spinning conditions. A secondary chemical shift analysis of the 141 residue protein suggests a three-dimensional fold seen in earlier X-ray and solution-state NMR work and points to spectroscopic polymorphism for a selected set of resonances.
Journal of Biomolecular NMR | 2012
Deepak Nand; Abhishek Cukkemane; Stefan Becker; Marc Baldus
Solid-state Nuclear Magnetic Resonance can provide detailed insight into structural and dynamical aspects of complex biomolecules. With increasing molecular size, advanced approaches for spectral simplification and the detection of medium to long-range contacts become of critical relevance. We have analyzed the protonation pattern of a membrane-embedded ion channel that was obtained from bacterial expression using protonated precursors and D2O medium. We find an overall reduction of 50% in protein protonation. High levels of deuteration at Hα and Hβ positions reduce spectral congestion in (1H,13C,15N) correlation experiments and generate a transfer profile in longitudinal mixing schemes that can be tuned to specific resonance frequencies. At the same time, residual protons are predominantly found at amino-acid side-chain positions enhancing the prospects for obtaining side-chain resonance assignments and for detecting medium to long-range contacts. Fractional deuteration thus provides a powerful means to aid the structural analysis of complex biomolecules by solid-state NMR.
Biophysical Journal | 2012
Markus Weingarth; Christian Ader; Adrien S. J. Melquiond; Deepak Nand; Olaf Pongs; Stefan Becker; Alexandre M. J. J. Bonvin; Marc Baldus
Elemental biological functions such as molecular signal transduction are determined by the dynamic interplay between polypeptides and the membrane environment. Determining such supramolecular arrangements poses a significant challenge for classical structural biology methods. We introduce an iterative approach that combines magic-angle spinning solid-state NMR spectroscopy and atomistic molecular dynamics simulations for the determination of the structure and topology of membrane-bound systems with a resolution and level of accuracy difficult to obtain by either method alone. Our study focuses on the Shaker B ball peptide that is representative for rapid N-type inactivating domains of voltage-gated K(+) channels, associated with negatively charged lipid bilayers.