Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where DeEtta Mills is active.

Publication


Featured researches published by DeEtta Mills.


Applied and Environmental Microbiology | 2006

Microbial communities in the surface mucopolysaccharide layer and the black band microbial mat of black band-diseased Siderastrea siderea.

Raju Sekar; DeEtta Mills; Elizabeth R. Remily; Joshua D. Voss; Laurie L. Richardson

ABSTRACT Microbial community profiles and species composition associated with two black band-diseased colonies of the coral Siderastrea siderea were studied by 16S rRNA-targeted gene cloning, sequencing, and amplicon-length heterogeneity PCR (LH-PCR). Bacterial communities associated with the surface mucopolysaccharide layer (SML) of apparently healthy tissues of the infected colonies, together with samples of the black band disease (BBD) infections, were analyzed using the same techniques for comparison. Gene sequences, ranging from 424 to 1,537 bp, were retrieved from all positive clones (n = 43 to 48) in each of the four clone libraries generated and used for comparative sequence analysis. In addition to LH-PCR community profiling, all of the clone sequences were aligned with LH-PCR primer sequences, and the theoretical lengths of the amplicons were determined. Results revealed that the community profiles were significantly different between BBD and SML samples. The SML samples were dominated by γ-proteobacteria (53 to 64%), followed by β-proteobacteria (18 to 21%) and α-proteobacteria (5 to 11%). In contrast, both BBD clone libraries were dominated by α-proteobacteria (58 to 87%), followed by verrucomicrobia (2 to 10%) and 0 to 6% each of δ-proteobacteria, bacteroidetes, firmicutes, and cyanobacteria. Alphaproteobacterial sequence types related to the bacteria associated with toxin-producing dinoflagellates were observed in BBD clone libraries but were not found in the SML libraries. Similarly, sequences affiliated with the family Desulfobacteraceae and toxin-producing cyanobacteria, both believed to be involved in BBD pathogenesis, were found only in BBD libraries. These data provide evidence for an association of numerous toxin-producing heterotrophic microorganisms with BBD of corals.


Microbial Ecology | 2007

Black Band Disease Microbial Community Variation on Corals in Three Regions of the Wider Caribbean

Joshua D. Voss; DeEtta Mills; Jamie L. Myers; Elizabeth R. Remily; Laurie L. Richardson

Black band disease (BBD) is a pathogenic consortium of microorganisms that primarily affects massive framework-building scleractinian corals on reefs worldwide. There has been considerable debate concerning the microbial community composition of BBD. The aim of this study was to utilize microbial profiling to assess overall patterns of variation in the BBD bacterial community with respect to geographic location, host coral species, time, and nutrient regime. Length heterogeneity polymerase chain reaction (LH-PCR) was employed to differentiate BBD communities based on the natural variation in the sequence lengths within hypervariable domains of the 16S rRNA gene. Analysis of LH-PCR profiles of 97 BBD samples using multivariate ordination methods and analysis of similarity revealed significant clustering with respect to geographic region when comparing BBD sampled from reefs near Lee Stocking Island in the Bahamas’ Exuma Chain, the Northern Florida Keys (NFK), and St. John in the US Virgin Islands. There was much variability in BBD community composition on a regional basis, between sites in the NFK, and in terms of coral host species. The observed differences among BBD microbial community profiles were driven primarily by variation in relative abundance of 313–316-bp amplicons, which correspond to cyanobacteria and α-proteobacteria. The results obtained in this study support previous reports of intrinsic variability and complexity of the BBD microbial community but also suggest that this variability has biogeographic patterns.


Journal of Microbiological Methods | 2011

The application of amplicon length heterogeneity PCR (LH-PCR) for monitoring the dynamics of soil microbial communities associated with cadaver decomposition☆

Lilliana I. Moreno; DeEtta Mills; Jill Fetscher; Krista John-Williams; Lee Meadows-Jantz; Bruce R. McCord

The placement of cadavers in shallow, clandestine graves may alter the microbial and geochemical composition of the underlying and adjacent soils. Using amplicon length heterogeneity-PCR (LH-PCR) the microbial community changes in these soils can be assessed. In this investigation, nine different grave sites were examined over a period of 16weeks. The results indicated that measurable changes occurred in the soil bacterial community during the decomposition process. In this study, amplicons corresponding to anaerobic bacteria, not indigenous to the soil, were shown to produce differences between grave sites and control soils. Among the bacteria linked to these amplicons are those that are most often part of the commensal flora of the intestines, mouth and skin. In addition, over the 16week sampling interval, the level of indicator organisms (i.e., nitrogen fixing bacteria) dropped as the body decomposed and after four weeks of environmental exposure they began to increase again; thus differences in the abundance of nitrogen fixing bacteria were also found to contribute to the variation between controls and grave soils. These results were verified using primers that specifically targeted the nifH gene coding for nitrogenase reductase. LH-PCR provides a fast, robust and reproducible method to measure microbial changes in soil and could be used to determine potential cadaveric contact in a given area. The results obtained with this method could ultimately provide leads to investigators in criminal or missing person scenarios and allow for further analysis using human specific DNA assays to establish the identity of the buried body.


Journal of Forensic Sciences | 2006

Microbial Metagenome Profiling Using Amplicon Length Heterogeneity-Polymerase Chain Reaction Proves More Effective Than Elemental Analysis in Discriminating Soil Specimens*

Lilliana I. Moreno; DeEtta Mills; James A. Entry; Robert T. Sautter; Kalai Mathee

ABSTRACT: The combination of soils ubiquity and its intrinsic abiotic and biotic information can contribute greatly to the forensic field. Although there are physical and chemical characterization methods of soil comparison for forensic purposes, these require a level of expertise not always encountered in crime laboratories. We hypothesized that soil microbial community profiling could be used to discriminate between soil types by providing biological fingerprints that confer uniqueness. Three of the six Miami‐Dade soil types were randomly selected and sampled. We compared the microbial metagenome profiles generated using amplicon length heterogeneity‐polymerase chain reaction analysis of the 16S rRNA genes with inductively coupled plasma optical emission spectroscopy analysis of 13 elements (Al, B, Ca, Cu, Fe, K, Mg, Mn, Na, P, S, Si, and Zn) that are commonly encountered in soils. Bray–Curtis similarity index and analysis of similarity were performed on all data to establish differences within sites, among sites, and across two seasons. These data matrices were used to group samples that shared similar community patterns using nonmetric multidimensional scaling analysis. We concluded that while chemical characterization could provide some differentiation between soils, microbial metagenome profiling was better able to discriminate between the soil types and had a high degree of reproducibility, therefore proving to be a potential tool for forensic soil comparisons.


Forensic Science International-genetics | 2014

Developmental Validation of the ParaDNA® Screening System - A presumptive test for the detection of DNA on forensic evidence items

Nick Dawnay; Beccy Stafford-Allen; Dave Moore; Stephen Blackman; Paul Rendell; Erin K. Hanson; Jack Ballantyne; Beatrice Kallifatidis; Julian Mendel; DeEtta Mills; Randy Nagy; Simon Wells

Current assessment of whether a forensic evidence item should be submitted for STR profiling is largely based on the personal experience of the Crime Scene Investigator (CSI) and the submissions policy of the law enforcement authority involved. While there are chemical tests that can infer the presence of DNA through the detection of biological stains, the process remains mostly subjective and leads to many samples being submitted that give no profile or not being submitted although DNA is present. The ParaDNA(®) Screening System was developed to address this issue. It consists of a sampling device, pre-loaded reaction plates and detection instrument. The test uses direct PCR with fluorescent HyBeacon™ detection of PCR amplicons to identify the presence and relative amount of DNA on an evidence item and also provides a gender identification result in approximately 75 minutes. This simple-to-use design allows objective data to be acquired by both DNA analyst and non-specialist personnel, to enable a more informed submission decision to be made. The developmental validation study described here tested the sensitivity, reproducibility, accuracy, inhibitor tolerance, and performance of the ParaDNA Screening System on a range of mock evidence items. The data collected demonstrates that the ParaDNA Screening System identifies the presence of DNA on a variety of evidence items including blood, saliva and touch DNA items.


Analytical and Bioanalytical Chemistry | 2009

Genetic individualization of Cannabis sativa by a short tandem repeat multiplex system

Maria Mendoza; DeEtta Mills; Hemant Lata; Suman Chandra; Mahmoud A. ElSohly; José R. Almirall

Cannabis sativa is the most frequently used of all illicit drugs in the USA. Cannabis has been used throughout history for its stems in the production of hemp fiber, seed for oil and food, and buds and leaves as a psychoactive drug. Short tandem repeats (STRs) were chosen as molecular markers owing to their distinct advantages over other genetic methods. STRs are codominant, can be standardized such that reproducibility between laboratories can be easily achieved, have a high discrimination power, and can be multiplexed. In this study, six STR markers previously described for C. sativa were multiplexed into one reaction. The multiplex reaction was able to individualize 98 cannabis samples (14 hemp and 84 marijuana, authenticated as originating from 33 of the 50 states of the USA) and detect 29 alleles averaging 4.8 alleles per loci. The data did not relate the samples from the same state to each other. This is the first study to report a single-reaction sixplex and apply it to the analysis of almost 100 cannabis samples of known geographic origin.


Forensic Science International-genetics | 2015

Developmental validation of the ParaDNA(®) Intelligence System-A novel approach to DNA profiling.

Stephen Blackman; Nick Dawnay; Glyn Ball; Beccy Stafford-Allen; Nicholas D. Tribble; Paul Rendell; Kelsey Neary; Erin K. Hanson; Jack Ballantyne; Beatrice Kallifatidis; Julian Mendel; DeEtta Mills; Simon Wells

DNA profiling through the analysis of STRs remains one of the most widely used tools in human identification across the world. Current laboratory STR analysis is slow, costly and requires expert users and interpretation which can lead to instances of delayed investigations or non-testing of evidence on budget grounds. The ParaDNA(®) Intelligence System has been designed to provide a simple, fast and robust way to profile DNA samples in a lab or field-deployable manner. The system analyses 5-STRs plus amelogenin to deliver a DNA profile that enables users to gain rapid investigative leads and intelligent prioritisation of samples in human identity testing applications. Utilising an innovative sample collector, minimal training is required to enable both DNA analysts and nonspecialist personnel to analyse biological samples directly, without prior processing, in approximately 75min. The test uses direct PCR with fluorescent HyBeacon(®) detection of STR allele lengths to provide a DNA profile. The developmental validation study described here followed the Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines and tested the sensitivity, reproducibility, accuracy, inhibitor tolerance, and performance of the ParaDNA Intelligence System on a range of mock evidence items. The data collected demonstrate that the ParaDNA Intelligence System displays useful DNA profiles when sampling a variety of evidence items including blood, saliva, semen and touch DNA items indicating the potential to benefit a number of applications in fields such as forensic, military and disaster victim identification (DVI).


Communications in Soil Science and Plant Analysis | 2014

Long-Term Organic Nutrient Management Fosters the Eubacterial Community Diversity in the Indian Semi-arid Alfisol as Revealed by Length Heterogeneity–PCR

Dananjeyan Balachandar; Melissa Doud; Lisa Schneper; DeEtta Mills; Kalai Mathee

Agricultural practices influence the community structure and functional diversity of soil microorganisms. In the present study, the impact of nutrient-management systems on the changes in the biological properties of Indian semi-arid Alfisol was assessed. The long-term organically managed (OGF) and inorganically fertilized (IGF) soils from century-old experimental plots were compared for eubacterial diversity using amplicon length heterogeneity PCR (LH-PCR) targeting three hypervariable domains (V1, V1_V2, and V3) of 16S rRNA gene. Of these domains, V1_V2 could discriminate the bacterial communities between the soil types. The relative ratios of amplicons differed between OGF and ICF soils, and eubacterial diversity was decreased substantially because of the inorganic chemical fertilizers, as compared to organic amendments. The Bray–Curtis similarity index and diversity indices of amplicons were greater in OGF soil than in ICF soil. This polyphasic approach revealed that the diversity and functionality of the soil eubacterial community were encouraged by long-term organic manures more than inorganic chemical fertilizers.


Electrophoresis | 2014

F-108 polymer and capillary electrophoresis easily resolves complex environmental DNA mixtures and SNPs.

Natalie Damaso; Lauren Martin; Priyanka Kushwaha; DeEtta Mills

Ecological studies of microbial communities often use profiling methods but the true community diversity can be underestimated in methods that separate amplicons based on sequence length using performance optimized polymer 4. Taxonomically, unrelated organisms can produce the same length amplicon even though the amplicons have different sequences. F‐108 polymer has previously been shown to resolve same length amplicons by sequence polymorphisms. In this study, we showed F‐108 polymer, using the ABI Prism 310 Genetic Analyzer and CE, resolved four bacteria that produced the same length amplicon for the 16S rRNA domain V3 but have variable nucleotide content. Second, a microbial mat community profile was resolved and supported by NextGen sequencing where the number of peaks in the F‐108 profile was in concordance with the confirmed species numbers in the mat. Third, equine DNA was analyzed for SNPs. The F‐108 polymer was able to distinguish heterozygous and homozygous individuals for the melanocortin 1 receptor coat color gene. The method proved to be rapid, inexpensive, reproducible, and uses common CE instruments. The potential for F‐108 to resolve DNA mixtures or SNPs can be applied to various sample types—from SNPs to forensic mixtures to ecological communities.


Talanta | 2017

Chemical and canine analysis as complimentary techniques for the identification of active odors of the invasive fungus, Raffaelea lauricola

Alison G. Simon; DeEtta Mills; Kenneth G. Furton

Raffaelea lauricola, a fungus causing a vascular wilt (laurel wilt) in Lauraceae trees, was introduced into the United States in the early 2000s. It has devastated forests in the Southeast and has now moved into the commercial avocado groves in southern Florida. Trained detection canines are currently one of the few successful methods for early detection of pre-symptomatic diseased trees. In order to achieve the universal and frequent training required to have successful detection canines, it is desirable to create accessible, safe, and long-lasting training aids. However, identification of odorants and compounds is limited by several factors, including both the availability of chemicals and the need to present chemicals individually and in combination to detection canines. A method for the separation and identification of volatile organic compounds (VOCs) from environmental substances for the creation of such a canine training aid is presented here. Headspace solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used to identify the odors present in avocado trees infected with the R. lauricola phytopathogen. Twenty-eight compounds were detected using this method, with nine present in greater than 80% of samples. The majority of these compounds were not commercially available as standard reference materials, and a canine trial was designed to identify the active odors without the need of pure chemical compounds. To facilitate the creation of a canine training aid, the VOCs above R. lauricola were separated by venting a 0.53mm ID solgel-wax gas chromatography column to the atmosphere. Ten minute fractions of the odor profile were collected on cotton gauze in glass vials and presented to the detection canines in a series of field trials. The canines alerted to the VOCs from the vials that correspond to a portion of the chromatogram containing the most volatile species from R. lauricola. This innovative fractionation and collection method can be used to develop reliable and cost effective canine training aids.

Collaboration


Dive into the DeEtta Mills's collaboration.

Top Co-Authors

Avatar

James A. Entry

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Julian Mendel

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Kalai Mathee

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Giri Narasimhan

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Kenneth G. Furton

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Beatrice Kallifatidis

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Joshua D. Voss

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Krish Jayachandran

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Elizabeth R. Remily

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Erin K. Hanson

University of Central Florida

View shared research outputs
Researchain Logo
Decentralizing Knowledge