Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Defang Ma is active.

Publication


Featured researches published by Defang Ma.


Bioresource Technology | 2013

Effects of dissolved organic matter size fractions on trihalomethanes formation in MBR effluents during chlorine disinfection

Defang Ma; Baoyu Gao; Shenglei Sun; Yan Wang; Qinyan Yue; Qian Li

In this study, effects of dissolved organic matter (DOM) size fractions on trihalomethanes (THMs) formation in MBR effluents during chlorination were investigated by fractionating DOM into >100, 30-100, 10-30, 5-10 and <5 kDa fractions using ultrafiltration (UF) membranes based on molecular weight (MW). Fractions of MW>30 kDa constituted 87% of DOM and were the main THMs precursors, which exhibited higher specific ultraviolet absorbance (SUVA) and THMs formation potential (THMFP) and should be reduced to control THMs formation. For these fractions, THMs formation was mostly attributed to slow chlorine decay, and THMs yield coefficients were low because halogenated intermediates derived from the macromolecular DOM were difficult to decompose to produce THMs. Moreover, there was a strong linear correlation between dissolved organic carbon (DOC) concentration and THMFP (R(2)=0.981), as well as between the SUVA and specific THMFP (R(2)=0.993) in all fractions.


Bioresource Technology | 2014

Influences of dissolved organic matter characteristics on trihalomethanes formation during chlorine disinfection of membrane bioreactor effluents.

Defang Ma; Bo Peng; Yuhang Zhang; Baoyu Gao; Yan Wang; Qinyan Yue; Qian Li

Dissolved organic matter (DOM) in MBR-treated municipal wastewater intended for reuse was fractionated through ultrafiltration and XAD-8 resin adsorption and characterized by fluorescence spectroscopy. To probe the influences of DOM characteristics on trihalomethanes (THMs) formation reactivity during chlorination, THMs yield and speciation of DOM fractions was investigated. It was found that chlorine reactivity of DOM decreased with the decrease of molecular weight (MW), and MW>30kDa fractions produced over 55% of total THMs in chlorinated MBR effluent. Hydrophobic organics had much higher THMs formation reactivity than hydrophilic substances. Particularly, hydrophobic acids exhibited the highest chlorine reactivity and contributed up to 71% of total THMs formation. Meanwhile, low-MW and hydrophilic DOM were susceptible to produce bromine-containing THMs. Of the fluorescent DOM in MBR effluent, aromatic moieties and humic acid-like had higher chlorine reactivity. Conclusively, macromolecular and hydrophobic organics containing aromatic moieties and humic acid-like must be removed to reduce THMs formation.


Bioresource Technology | 2015

Fractionation, characterization and C-, N-disinfection byproduct formation of soluble microbial products in MBR processes.

Defang Ma; Yingjie Meng; Chufan Xia; Baoyu Gao; Yan Wang

Soluble microbial products are heterogeneous organic materials generated during microbial growth and decay, which are the major soluble organic matters in MBR effluents and are the primary precursors forming disinfection by-products (DBPs). In this study, biomass associated products (BAP) and utilization associated products (UAP) were separately produced to investigate their physical chemical characteristics and disinfection byproduct (DBP) formation during chlorination in the presence of ammonia. BAP had higher formation reactivity of halogenated carbonaceous and nitrogenous DBPs including trihalomethanes, haloketones, haloacetonitriles and trichloronitromethane due to their higher percentage of large molecular weight (MW) materials and humic substances compared with UAP. However, the nonhalogenated species N-nitrosodimethylamine (NDMA) yield of UAP was twice higher than that of BAP because UAP contained more nitrogenous organic matters with MW<500Da including aromatic polypeptide/amino acid-like materials and secondary amines, which have been proved to have high NDMA formation potential.


Bioresource Technology | 2014

Effects of sludge retention times on reactivity of effluent dissolved organic matter for trihalomethane formation in hybrid powdered activated carbon membrane bioreactors

Defang Ma; Baoyu Gao; Chufan Xia; Yan Wang; Qinyan Yue; Qian Li

In this study, real municipal wastewater intended for reuse was treated by two identical hybrid PAC/MBRs (membrane bioreactors with powdered activated carbon addition), which were operated at sludge retention times (SRTs) of 30 and 180 days, respectively. In order to investigate the effects of SRT on trihalomethane (THM) formation in chlorinated PAC/MBR effluents, characteristics and THM formation reactivity of effluent dissolved organic matter (EfOM) at different SRTs were examined. PAC/MBR-180 had higher level of EfOM, which contained less simple aromatic proteins and exhibited lower specific UV absorbance. EfOM with molecular weight <5 kDa from PAC/MBR-30 (23%) was lower than PAC/MBR-180 (26%). About 50% of EfOM from PAC/MBR-30 was hydrophobic acids, which was higher than that from PAC/MBR-180 (about 36%). EfOM at SRT 180 days exhibited higher hydrophilicity. Prolonging SRT greatly reduced THM formation reactivity of EfOM, but increased the formation of bromine-containing species during chlorination of PAC/MBR effluents.


Journal of Environmental Sciences-china | 2015

Effect of six kinds of scale inhibitors on calcium carbonate precipitation in high salinity wastewater at high temperatures

Xiaochen Li; Baoyu Gao; Qinyan Yue; Defang Ma; Hongyan Rong; Pin Zhao; Pengyou Teng

Precipitation of calcium carbonate (CaCO3) scale on heat transfer surfaces is a serious and expensive problem widely occurring in numerous industrial processes. In this study, we compared the scale inhibition effect of six kinds of commercial scale inhibitors and screened out the best one (scale inhibitor SQ-1211) to investigate its scale inhibition performance in highly saline conditions at high temperature through static scale inhibition tests. The influences of scale inhibitor dosage, temperature, heating time and pH on the inhibition efficiency of the optimal scale inhibitor were investigated. The morphologies and crystal structures of the precipitates were characterized by Scanning Electron Microscopy and X-ray Diffraction analysis. Results showed that the scale inhibition efficiency of the optimal scale inhibitor decreased with the increase of the reaction temperature. When the concentration of Ca2+ was 1600 mg/L, the scale inhibition rate could reach 90.7% at 80°C at pH8. The optimal scale inhibitor could effectively retard scaling at high temperature. In the presence of the optimal scale inhibitor, the main crystal structure of CaCO3 changed from calcite to aragonite.


Journal of Hazardous Materials | 2015

Effects of chlorination operating conditions on trihalomethane formation potential in polyaluminum chloride-polymer coagulated effluent.

Ruihua Li; Baoyu Gao; Defang Ma; Hongyan Rong; Shenglei Sun; Fang Wang; Qinyan Yue; Yan Wang

In this study, coagulation performance of polyaluminum chloride (PAC) and PAC-lignin acrylamide (PAC+LAM) in reservoir water treatment was contrastively analyzed. Effects of operating conditions including chlorine dose, contact time and pH on the formation potential of trihalomethanes (THMs) during chlorination in coagulated effluent were also investigated. Comparing with PAC, PAC+LAM achieved higher efficiency in the removal of THMs precursors. TTHM yield in unfiltered water samples (UW) was greater than that of filtered water (FW) due to the residual dissolved organic matter (DOM) in the suspended particles or micro flocs. Meanwhile, operating conditions during chlorination had a significant influence on THMs formation potential. With chlorine dose rising, mass ratio of CHCl3 to TTHM increased, whereas that of CHBr2Cl decreased due to higher Cl2/Br(-) molar ratio. TTHM and CHCl3 levels rose with the increase of pH. Under a given chlorination condition, there was a minor effect of contact time on THM speciation.


Chemosphere | 2014

Impacts of powdered activated carbon addition on trihalomethane formation reactivity of dissolved organic matter in membrane bioreactor effluent.

Defang Ma; Yue Gao; Baoyu Gao; Yan Wang; Qinyan Yue; Qian Li

Characteristics and trihalomethane (THM) formation reactivity of dissolved organic matter (DOM) in effluents from two membrane bioreactors (MBRs) with and without powdered activated carbon (PAC) addition (referred to as PAC/MBR and MBR, respectively) were examined to investigate the effects of PAC addition on THM formation of MBR effluent during chlorination. PAC addition increased the specific UV absorbance. Hydrophobic DOM especially hydrophobic acids in PAC/MBR effluent (50%) were more than MBR effluent (42%). DOM with molecular weight <1 kDa constituted 12% of PAC/MBR effluent DOM, which was less than that of MBR effluent (16%). Data obtained from excitation and emission matrix fluorescence spectroscopy revealed that PAC/MBR effluent DOM contained more simple aromatic protein, but had less fulvic acid-like and soluble microbial by-product-like. PAC addition reduced the formation of bromine-containing THMs during chlorination of effluents, but increased THM formation reactivity of effluent DOM.


Bioresource Technology | 2016

Effect of powdered activated carbon (PAC) on MBR performance and effluent trihalomethane formation: At the initial stage of PAC addition.

Yue Gao; Defang Ma; Qinyan Yue; Baoyu Gao; Xia Huang

In this study, the MBR was used to treat municipal wastewater for reuse. Effects of powdered activated carbon (PAC) addition on MBR system in terms of effluent water quality, trihalomethane (THM) formation and membrane organic fouling tendency of MBR sludge supernatant at the initial stage of PAC addition were investigated. Effects of chlorine dose and contact time on THM formation and speciation were also studied. PAC addition enhanced the removal of organic matters, especially aromatic components, which improved the UV254 removal rate from 34% to 83%. PAC addition greatly reduced the membrane organic fouling tendency of MBR sludge supernatant. PAC addition reduced the MBR effluent trihalomethane formation potential (THMFP) from 351.29 to 241.95μg/L, while increased THM formation reactivity by 42%. PAC addition enhanced the formation of higher toxic bromine-containing THMs. High chlorine dose and contact time resulted in higher THM formation but lower proportion of bromine-containing THMs.


Bioresource Technology | 2016

Characteristics and trihalomethane formation reactivity of dissolved organic matter in effluents from membrane bioreactors with and without filamentous bulking.

Chufan Xia; Defang Ma; Baoyu Gao; Xinxiao Hu; Qinyan Yue; Yingjie Meng; Shuyu Kang; Bei Zhang; Yuanfeng Qi

In this study, synthetic wastewater was treated by two identical membrane bioreactors (MBRs): the normal sludge MBR (NS-MBR) and the bulking sludge MBR (BS-MBR). Effects of filamentous bulking on the characteristics and trihalomethane (THM) formation reactivity of MBR effluent dissolved organic matter (EfOM) were investigated. Filamentous sludge bulking had no significant influence on the regulated MBR effluent water quality except NO2-N and NO3-N. NS-MBR effluent had more low molecular weight (LMW) (<5kDa) EfOM (92.43%) than BS-MBR (75.18%). About two-thirds of EfOM from BS-MBR were hydrophilic substances. On the contrary, EfOM from NS-MBR exhibited higher hydrophobicity. The ratio of polysaccharides and proteins in MBR effluents increased after filamentous bulking. There were more protein-like materials, fulvic acid-like and humic acid-like in BS-MBR EfOM. The THM formation reactivity of BS-MBR EfOM was 30.15% of NS-MBR EfOM, whereas BS-MBR EfOM exhibited higher formation reactivity of bromine containing species.


Water Science and Technology | 2015

Factors affecting trihalomethane formation and speciation during chlorination of reclaimed water

Defang Ma; Baoyu Gao; Yan Wang; Qinyan Yue; Qian Li

A hybrid process with membrane bioreactor (MBR) and powdered activated carbon (PAC), PAC/MBR, was used for real municipal wastewater treatment and reuse. The roles of chlorine dose, contact time, pH and bromide in trihalomethane (THM) formation and speciation during chlorination of the reclaimed water were investigated. Total trihalomethane (TTHM) yield exponentially increased to maximum with increasing chlorine dose (correlation coefficient R2=0.98). Prolonging substrate chlorine contact time significantly promoted TTHM formation. Less than 40% of THMs formed in the first 24 h, indicating that the PAC/MBR effluent organic matters were mostly composed of slow-reacting precursors. Increasing pH and bromide concentration facilitated THM formation. Higher chlorine dose and contact time enhanced chloro-THM formation. The bromo-THM formation was favored at near neutral condition. Despite the variation of chlorine dose, contact time and pH, the yield of THM species in order was usually CHCl3>CHBrCl2>CHBr2Cl>CHBr3. However, THM speciation shifted from chlorinated species to brominated species with increasing bromide concentration.

Collaboration


Dive into the Defang Ma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge