Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Defeng Deng is active.

Publication


Featured researches published by Defeng Deng.


Journal of Clinical Investigation | 2012

An NF-κB pathway-mediated positive feedback loop amplifies Ras activity to pathological levels in mice

Jaroslaw Daniluk; Yan Liu; Defeng Deng; Jun Chu; Haojie Huang; Sebastian Gaiser; Zobeida Cruz-Monserrate; Huamin Wang; Baoan Ji; Craig D. Logsdon

Genetic mutations that give rise to active mutant forms of Ras are oncogenic and found in several types of tumor. However, such mutations are not clear biomarkers for disease, since they are frequently detected in healthy individuals. Instead, it has become clear that elevated levels of Ras activity are critical for Ras-induced tumorigenesis. However, the mechanisms underlying the production of pathological levels of Ras activity are unclear. Here, we show that in the presence of oncogenic Ras, inflammatory stimuli initiate a positive feedback loop involving NF-κB that further amplifies Ras activity to pathological levels. Stimulation of Ras signaling by typical inflammatory stimuli was transient and had no long-term sequelae in wild-type mice. In contrast, these stimuli generated prolonged Ras signaling and led to chronic inflammation and precancerous pancreatic lesions (PanINs) in mice expressing physiological levels of oncogenic K-Ras. These effects of inflammatory stimuli were disrupted by deletion of inhibitor of NF-κB kinase 2 (IKK2) or inhibition of Cox-2. Likewise, expression of active IKK2 or Cox-2 or treatment with LPS generated chronic inflammation and PanINs only in mice expressing oncogenic K-Ras. The data support the hypothesis that in the presence of oncogenic Ras, inflammatory stimuli trigger an NF-κB-mediated positive feedback mechanism involving Cox-2 that amplifies Ras activity to pathological levels. Because a large proportion of the adult human population possesses Ras mutations in tissues including colon, pancreas, and lung, disruption of this positive feedback loop may be an important strategy for cancer prevention.


Clinical Cancer Research | 2011

Mast Cells in Tumor Microenvironment Promotes the in vivo Growth of Pancreatic Ductal Adenocarcinoma

David Z. Chang; Ying Ma; Baoan Ji; Huamin Wang; Defeng Deng; Yan Liu; James L. Abbruzzese; Yong-Jun Liu; Craig D. Logsdon; Patrick Hwu

Purpose: Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer death. No effective therapy is currently available for PDAC because of the lack of understanding of the mechanisms leading to its growth and development. Inflammatory cells, particularly mast cells, have been shown to play key roles in some cancers. We carried out this study to test the hypothesis that mast cells in the tumor microenvironment are essential for PDAC tumorigenesis. Experimental Design: The presence of inflammatory cells at various stages of PDAC development was determined in a spontaneous mouse model of PDAC (K-rasG12V). The importance of mast cells was determined using orthotopically implanted PDAC cells in mast cell–deficient Kitw-sh/w-sh mice and further confirmed by reconstitution of wild-type bone marrow–derived mast cells. Clinical relevance was assessed by correlating the presence of mast cells with clinical outcome in patients with PDAC. Results: In the spontaneous mouse model of PDAC (K-rasG12V), there was an early influx of mast cells to the tumor microenvironment. PDAC tumor growth was suppressed in mast cell–deficient Kitw-sh/w-sh mice, but aggressive PDAC growth was restored when PDAC cells were injected into mast cell–deficient mice reconstituted with wild-type bone marrow–derived mast cells. Mast cell infiltration into the tumor microenvironment was predictive of poor prognosis in patients with PDAC. Conclusions: Mast cells play an important role in PDAC growth and development in mouse models and are indicative of poor prognosis in humans, which makes them a potential novel therapeutic target. Clin Cancer Res; 17(22); 7015–23. ©2011 AACR.


Cancer Research | 2014

Cell Surface Lactate Receptor GPR81 Is Crucial for Cancer Cell Survival

Christina L. Roland; Thiruvengadam Arumugam; Defeng Deng; Shi He Liu; Bincy Philip; Sobeyda Gomez; William R. Burns; Huamin Wang; Zobeida Cruz-Monserrate; Craig D. Logsdon

The mechanisms that allow cancer cells to adapt to the typical tumor microenvironment of low oxygen and glucose and high lactate are not well understood. GPR81 is a lactate receptor recently identified in adipose and muscle cells that has not been investigated in cancer. In the current study, we examined GPR81 expression and function in cancer cells. We found that GPR81 was present in colon, breast, lung, hepatocellular, salivary gland, cervical, and pancreatic carcinoma cell lines. Examination of tumors resected from patients with pancreatic cancer indicated that 94% (148 of 158) expressed high levels of GPR81. Functionally, we observed that the reduction of GPR81 levels using shRNA-mediated silencing had little effect on pancreatic cancer cells cultured in high glucose, but led to the rapid death of cancer cells cultured in conditions of low glucose supplemented with lactate. We also observed that lactate addition to culture media induced the expression of genes involved in lactate metabolism, including monocarboxylase transporters in control, but not in GPR81-silenced cells. In vivo, GPR81 expression levels correlated with the rate of pancreatic cancer tumor growth and metastasis. Cells in which GPR81 was silenced showed a dramatic decrease in growth and metastasis. Implantation of cancer cells in vivo was also observed to lead to greatly elevated levels of GPR81. These data support that GPR81 is important for cancer cell regulation of lactate transport mechanisms. Furthermore, lactate transport is important for the survival of cancer cells in the tumor microenvironment. Cancer Res; 74(18); 5301-10. ©2014 AACR.


Gut | 2012

Detection of pancreatic cancer tumours and precursor lesions by cathepsin E activity in mouse models

Zobeida Cruz-Monserrate; Wael R. Abd-Elgaliel; Tobias Grote; Defeng Deng; Baoan Ji; Thiruvengadam Arumugam; Huamin Wang; Ching Hsuan Tung; Craig D. Logsdon

Background and Aims Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death in the USA. Surgical resection is the only effective treatment; however, only 20% of patients are candidates for surgery. The ability to detect early PDAC would increase the availability of surgery and improve patient survival. This study assessed the feasibility of using the enzymatic activity of cathepsin E (Cath E), a protease highly and specifically expressed in PDAC, as a novel biomarker for the detection of pancreas-bearing pancreatic intraepithelial neoplasia (PanIN) lesions and PDAC. Methods Pancreas from normal, chronic pancreatitis and PDAC patients was assessed for Cath E expression by quantitative real-time PCR and immunohistochemistry. Human PDAC xenografts and genetically engineered mouse models (GEMM) of PDAC were injected with a Cath E activity selective fluorescent probe and imaged using an optical imaging system. Results The specificity of Cath E expression in PDAC patients and GEMM of pancreatic cancer was confirmed by quantitative real-time PCR and immunohistochemistry. The novel probe for Cath E activity specifically detected PDAC in both human xenografts and GEMM in vivo. The Cath E sensitive probe was also able to detect pancreas with PanIN lesions in GEMM before tumour formation. Conclusions The elevated Cath E expression in PanIN and pancreatic tumours allowed in-vivo detection of human PDAC xenografts and imaging of pancreas with PanIN and PDAC tumours in GEMM. Our results support the usefulness of Cath E activity as a potential molecular target for PDAC and early detection imaging.


Scientific Reports | 2015

Targeting Pancreatic Ductal Adenocarcinoma Acidic Microenvironment

Zobeida Cruz-Monserrate; Christina L. Roland; Defeng Deng; Thiruvengadam Arumugam; Anna Moshnikova; Oleg A. Andreev; Yana K. Reshetnyak; Craig D. Logsdon

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death in the USA, accounting for ~40,000 deaths annually. The dismal prognosis for PDAC is largely due to its late diagnosis. Currently, the most sensitive diagnosis of PDAC requires invasive procedures, such as endoscopic ultrasonography, which has inherent risks and accuracy that is highly operator dependent. Here we took advantage of a general characteristic of solid tumors, the acidic microenvironment that is generated as a by-product of metabolism, to develop a novel approach of using pH (Low) Insertion Peptides (pHLIPs) for imaging of PDAC. We show that fluorescently labeled pHLIPs can localize and specifically detect PDAC in human xenografts as well as PDAC and PanIN lesions in genetically engineered mouse models. This novel approach may improve detection, differential diagnosis and staging of PDAC.


Molecular Cancer Therapeutics | 2015

New Blocking Antibodies against Novel AGR2–C4.4A Pathway Reduce Growth and Metastasis of Pancreatic Tumors and Increase Survival in Mice

Thiruvengadam Arumugam; Defeng Deng; Laura Bover; Huamin Wang; Craig D. Logsdon

Anterior gradient 2 (AGR2) promotes cancer growth, metastasis, and resistance to therapy via unknown mechanisms. We investigated the effects of extracellular AGR2 signaling through the orphan glycosylphosphatidylinositol-linked receptor C4.4A in pancreatic ductal adenocarcinoma (PDAC). Proliferation, migration, invasion, and apoptosis were measured using colorimetric, Boyden chamber, and FACS analyses. We developed blocking mAbs against AGR2 and C4.4A and tested their effects, along with siRNAs, on cancer cell functions and on orthotopic tumors in nude mice. Extracellular AGR2 stimulated proliferation, migration, invasion, and chemoresistance of PDAC cell lines. AGR2 interacted with C4.4A in cell lysates and mixtures of recombinant proteins. Knockdown of C4.4A reduced migration and resistance to gemcitabine. PDAC tissues, but not adjacent healthy pancreatic tissues, expressed high levels of AGR2 and C4.4A. AGR2 signaling through C4.4A required laminins 1 or 5 and integrin β1. Administration of antibodies against AGR2 and C4.4A reduced growth and metastasis and caused regression of aggressive xenograft tumors, leading to increased survival of mice. These data support a model in which AGR2 binds and signals via C4.4A in an autocrine loop and promotes the growth of pancreas tumors in mice. Blocking mAbs against AGR2 and C4.4A may have therapeutic potential against PDAC. Mol Cancer Ther; 14(4); 941–51. ©2015 AACR.


Frontiers in Oncology | 2013

Plectin-1 Targeted AAV Vector for the Molecular Imaging of Pancreatic Cancer

Prasad R. Konkalmatt; Defeng Deng; Stephanie Thomas; Michael T. Wu; Craig D. Logsdon; Brent A. French; Kimberly A. Kelly

Pancreatic ductal adenocarcinoma (PDAC) is highly malignant disease that is the fourth leading cause of cancer-related death in the US. Gene therapy using AAV vectors to selectively deliver genes to PDAC cells is an attractive treatment option for pancreatic cancer. However, most AAV serotypes display a broad spectrum of tissue tropism and none of the existing serotypes specifically target PDAC cells. This study tests the hypothesis that AAV2 can be genetically re-engineered to specifically target PDAC cells by modifying the capsid surface to display a peptide that has previously been shown to bind plectin-1. Toward this end, a Plectin-1 Targeting Peptide (PTP) was inserted into the loop IV region of the AAV2 capsid, and the resulting capsid (AAV-PTP) was used in a series of in vitro and in vivo experiments. In vitro, AAV-PTP was found to target all five human PDAC cell lines tested (PANC-1, MIA PaCa-2, HPAC, MPanc-96, and BxPC-3) preferentially over two non-neoplastic human pancreatic cell lines (human pancreatic ductal epithelial and human pancreatic stellate cells). In vivo, mice bearing subcutaneous tumor xenografts were generated using the PANC-1 cell line. Once tumors reached a size of ∼1–2 mm in diameter, the mice were injected intravenously with luciferase reporter vectors packaged in the either AAV-PTP or wild type AAV2 capsids. Luciferase expression was then monitored by bioluminescence imaging on days 3, 7, and 14 after vector injection. The results indicate that the AAV-PTP capsid displays a 37-fold preference for PANC-1 tumor xenographs over liver and other tissues; whereas the wild type AAV2 capsid displays a complementary preference for liver over tumors and other tissues. Together, these results establish proof-of-principle for the ability of PTP-modified AAV capsids to selectively target gene delivery to PDAC cells in vivo, which opens promising new avenues for the early detection, diagnosis, and treatment of pancreatic cancer.


Oncogene | 2017

Chronic inflammation initiates multiple forms of K-Ras-independent mouse pancreatic cancer in the absence of TP53

A K Swidnicka-Siergiejko; S B Gomez-Chou; Zobeida Cruz-Monserrate; Defeng Deng; Yuexin Liu; Haojie Huang; Baoan Ji; N Azizian; Jaroslaw Daniluk; W Lu; H Wang; A Maitra; C D Logsdon

Chronic inflammation (CI) is a risk factor for pancreatic cancer (PC) including the most common type, ductal adenocarcinoma (PDAC), but its role and the mechanisms involved are unclear. To investigate the role of CI in PC, we generated genetic mouse models with pancreatic specific CI in the presence or absence of TP53. Mice were engineered to express either cyclooxygenase-2 (COX-2) or IκB kinase-2 (IKK2), and TP53+/+ or TP53f/f specifically in adult pancreatic acinar cells by using a full-length pancreatic elastase promoter-driven Cre. Animals were followed for >80 weeks and pancreatic lesions were evaluated histologically and immunohistochemically. The presence of K-ras mutations was assessed by direct sequencing, locked nuclei acid (LNA)-based PCR, and immunohistochemistry. We observed that sustained COX-2/IKK2 expression caused histological abnormalities of pancreas, including increased immune cell infiltration, proliferation rate and DNA damage. A minority of animals with CI developed pre-neoplastic lesions, but cancer was not observed in any TP53+/+ animals within 84 weeks. In contrast, all animals with CI-lacking TP53 developed various subtypes of PC, including acinar cell carcinoma, ductal adenocarcinoma, sarcomatoid carcinoma and neuroendocrine tumors, and all died within 65 weeks. No evidence of K-ras mutations was observed. Variations in the activity of the Hippo, pERK and c-Myc pathways were found in the diverse cancer subtypes. In summary, chronic inflammation is extremely inefficient at inducing PC in the presence of TP53. However, in the absence of TP53, CI leads to the development of several rare K-ras-independent forms of PC, with infrequent PDAC. This may help explain the rarity of PDAC in persons with chronic inflammatory conditions.


Molecular Cancer Therapeutics | 2014

Bisphosphonates Inhibit Stellate Cell Activity and Enhance Antitumor Effects of Nanoparticle Albumin Bound-Paclitaxel in Pancreatic Ductal Adenocarcinoma

Vianey Gonzalez-Villasana; Cristian Rodriguez-Aguayo; Thiruvengadam Arumugam; Zobeida Cruz-Monserrate; Enrique Fuentes-Mattei; Defeng Deng; Rosa F. Hwang; Huamin Wang; Cristina Ivan; Raul J. Garza; Evan N. Cohen; Hui Gao; Guillermo N. Armaiz-Pena; Paloma del C. Monroig-Bosque; Bincy Philip; Mohammed H. Rashed; Mumin Alper Erdogan; Yolanda Gutierrez-Puente; Bulent Ozpolat; James M. Reuben; Anil K. Sood; Craig D. Logsdon; Gabriel Lopez-Berestein

Pancreatic stellate cells (PSC) have been recognized as the principal cells responsible for the production of fibrosis in pancreatic ductal adenocarcinoma (PDAC). Recently, PSCs have been noted to share characteristics with cells of monocyte-macrophage lineage (MML cells). Thus, we tested whether PSCs could be targeted with the nitrogen-containing bisphosphonates (NBP; pamidronate or zoledronic acid), which are potent MML cell inhibitors. In addition, we tested NBPs treatment combination with nanoparticle albumin–bound paclitaxel (nab-paclitaxel) to enhance antitumor activity. In vitro, we observed that PSCs possess α-naphthyl butyrate esterase (ANBE) enzyme activity, a specific marker of MML cells. Moreover, NBPs inhibited PSCs proliferation, activation, release of macrophage chemoattractant protein-1 (MCP-1), and type I collagen expression. NBPs also induced PSCs apoptosis and cell-cycle arrest in the G1 phase. In vivo, NBPs inactivated PSCs; reduced fibrosis; inhibited tumor volume, tumor weight, peritoneal dissemination, angiogenesis, and cell proliferation; and increased apoptosis in an orthotopic murine model of PDAC. These in vivo antitumor effects were enhanced when NBPs were combined with nab-paclitaxel but not gemcitabine. Our study suggests that targeting PSCs and tumor cells with NBPs in combination with nab-paclitaxel may be a novel therapeutic approach to PDAC. Mol Cancer Ther; 13(11); 2583–94. ©2014 AACR.


Cancer Research | 2017

Lipocalin-2 Promotes Pancreatic Ductal Adenocarcinoma by Regulating Inflammation in the Tumor Microenvironment

Sobeyda B. Gomez-Chou; Agnieszka Katarzyna Swidnicka-Siergiejko; Niharika Badi; Myrriah Chavez-Tomar; Gregory B. Lesinski; Tanios Bekaii-Saab; Matthew R. Farren; Thomas A. Mace; Carl Schmidt; Yan Liu; Defeng Deng; Rosa F. Hwang; Liran Zhou; Todd Moore; Deyali Chatterjee; Huamin Wang; Xiaohong Leng; Ralph B. Arlinghaus; Craig D. Logsdon; Zobeida Cruz-Monserrate

Lipocalin-2 (LCN2) promotes malignant development in many cancer types. LCN2 is upregulated in patients with pancreatic ductal adenocarcinoma (PDAC) and in obese individuals, but whether it contributes to PDAC development is unclear. In this study, we investigated the effects of Lcn2 depletion on diet-induced obesity, inflammation, and PDAC development. Mice with acinar cell-specific expression of KrasG12D were crossed with Lcn2-depleted animals and fed isocaloric diets with varying amounts of fat content. Pancreas were collected and analyzed for inflammation, pancreatic intraepithelial neoplasia (PanIN), and PDAC. We also used a syngeneic orthotopic PDAC mouse model to study tumor growth in the presence or absence of Lcn2 expression. In addition, to understand the mechanistic role of how LCN2 could be mediating PDAC, we studied LCN2 and its specific receptor solute carrier family 22 member 17 (SLC22A17) in human pancreatic cancer stellate cells (PSC), key mediators of the PDAC stroma. Depletion of Lcn2 diminished extracellular matrix deposition, immune cell infiltration, PanIN formation, and tumor growth. Notably, it also increased survival in both obesity-driven and syngeneic orthotopic PDAC mouse models. LCN2 modulated the secretion of proinflammatory cytokines in PSC of the PDAC tumor microenvironment, whereas downregulation of LCN2-specific receptor SLC22A17 blocked these effects. Our results reveal how LCN2 acts in the tumor microenvironment links obesity, inflammation, and PDAC development. Cancer Res; 77(10); 2647-60. ©2017 AACR.

Collaboration


Dive into the Defeng Deng's collaboration.

Top Co-Authors

Avatar

Craig D. Logsdon

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Huamin Wang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Zobeida Cruz-Monserrate

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Baoan Ji

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Thiruvengadam Arumugam

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Yan Liu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Christina L. Roland

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Haojie Huang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaroslaw Daniluk

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge