Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Defne Apul is active.

Publication


Featured researches published by Defne Apul.


Journal of Environmental Management | 2011

Economic and environmental analysis of standard, high efficiency, rainwater flushed, and composting toilets.

C. Anand; Defne Apul

The current sanitation technology in developed countries is based on diluting human excreta with large volumes of centrally provided potable water. This approach is a poor use of water resources and is also inefficient, expensive, and energy intensive. The goal of this study was to compare the standard sanitation technology (Scenario 1) with alternative technologies that require less or no potable water use in toilets. The alternative technologies considered were high efficiency toilets flushed with potable water (Scenario 2), standard toilets flushed with rainwater (Scenario 3), high efficiency toilets flushed with rainwater (Scenario 4), and composting toilets (Scenario 5). Cost, energy, and carbon implications of these five design scenarios were studied using two existing University of Toledo buildings. The results showed that alternative systems modeled in Scenarios 2, 4, and 5 were viable options both from an investment and an environmental performance perspective. High efficiency fixtures that use potable water (Scenario 2) is often the most preferred method in high efficiency buildings due to reduced water use and associated reductions in annual water and wastewater costs. However, the cost, energy, and CO(2)EE analyses all showed that Scenarios 4 and 5 were preferable over Scenario 2. Cost payback periods of scenarios 2, 4 and 5 were less than 10 years; in the future, increase in water and wastewater services would further decrease the payback periods. The centralized water and wastewater services have high carbon footprints; therefore if carbon footprint reduction is a primary goal of a building complex, alternative technologies that require less potable water and generate less wastewater can largely reduce the carbon footprint. High efficiency fixtures flushed with rainwater (Scenario 4) and composting toilets (Scenario 5) required considerably less energy than direct energy demands of buildings. However, the annual carbon footprint of these technologies was comparable to the annual carbon footprint from space heating. Similarly, the carbon savings that could be achieved from Scenario 4 or 5 were comparable to a recycling program that can be implemented in buildings.


Energy and Environmental Science | 2017

A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques

Zhaoning Song; Chad L. McElvany; Adam B. Phillips; Ilke Celik; Patrick W. Krantz; Suneth C. Watthage; Geethika K. Liyanage; Defne Apul; Michael J. Heben

After rapid progress in the past few years, emerging solar cells based on metal halide perovskites have become a potential candidate to rival and even outperform crystalline silicon photovoltaics (PV) in the marketplace. With high material utilization, easy manufacturing processes, and high power conversion efficiencies >20%, many experts anticipate that perovskite solar cells (PSCs) will be one of the cheapest PV technologies in the future. Here we evaluate the economic potential of PSCs by developing a bottom-up cost model for perovskite PV modules fabricated using feasible low-cost materials and processes. We calculate the direct manufacturing cost (


Waste Management | 2014

Composting toilets as a sustainable alternative to urban sanitation - A review

Chirjiv K. Anand; Defne Apul

31.7 per m2) and the minimum sustainable price (MSP,


Journal of Environmental Management | 2017

Life cycle assessment of superheated steam drying technology as a novel cow manure management method

Mohammadmatin Hanifzadeh; Zahra Nabati; Pairote Longka; Pomthong Malakul; Defne Apul

0.41 per Wp) for a standard perovskite module manufactured in the United States. Such modules, operating at 16% photoconversion efficiency in a 30-year, unsubsidized, utility-level power plant, would produce electricity at levelized cost of energy (LCOE) values ranging from 4.93 to 7.90 ¢ per kW per h. We discuss limitations in comparing calculated MSPs to actual market prices, determine the effect of module lifetime, examine the effects of alternative materials and constructions, and indicate avenues to further reduce the MSP and LCOE values. The analysis shows that PSCs can emerge as a cost leader in PV power generation if critical remaining issues can be resolved.


Journal of Environmental Management | 2013

Development and application of EEAST: A life cycle based model for use of harvested rainwater and composting toilets in buildings

Jay Devkota; Hannah Schlachter; C. Anand; Robert Phillips; Defne Apul

In todays flush based urban sanitation systems, toilets are connected to both the centralized water and wastewater infrastructures. This approach is not a sustainable use of our water and energy resources. In addition, in the U.S., there is a shortfall in funding for maintenance and upgrade of the water and wastewater infrastructures. The goal of this paper was to review the current knowledge on composting toilets since this technology is decentralized, requires no water, creates a value product (fertilizer) and can possibly reduce the burden on the current infrastructure as a sustainable sanitation approach. We found a large variety of composting toilet designs and categorized the different types of toilets as being self contained or central; single or multi chamber; waterless or with water/foam flush, electric or non-electric, and no-mix or combined collection. Factors reported as affecting the composting process and their optimum values were identified as; aeration, moisture content (50-60%), temperature (40-65°C), carbon to nitrogen ratio (25-35), pH (5.5-8.0), and porosity (35-50%). Mass and energy balance models have been created for the composting process. However there is a literature gap in the use of this knowledge in design and operation of composting toilets. To evaluate the stability and safety of compost for use as fertilizer, various methods are available and the temperature-time criterion approach is the most common one used. There are many barriers to the use of composting toilets in urban settings including public acceptance, regulations, and lack of knowledge and experience in composting toilet design and operation and program operation.


Journal of Great Lakes Research | 2004

Community Respiration Rates in Lake Superior

Noel R. Urban; Defne Apul; Martin T. Auer

Common methods of managing dairy manure are directly applying it to the farm field as a fertilizer. For direct application without any type of treatment, the majority of nutrients in the manure run off to the local river and lake during precipitation periods. The algae bloom is one of the environmental outcomes due to eutrophication of the lakes, which may jeopardize the quality of drinking water. In this study, superheated steam drying (SSD) technology is investigated as an alternative manure management method. Rapidly dried cow manure can be used as alternative fuel. Evaluations of energy payback time (EPBT) and life cycle assessment (LCA) of the SSD technology are presented in the SSD scenario and the results are compared with those of the direct field application (FA) of fresh manure and anaerobic digestion (AD). The heat required for the generation of superheated steam in the SSD scenario is provided from combustion of the dry manure to reduce energy costs. The results for the SSD process show 95% and 70% lower eutrophication and global warming potential in comparison to the FA scenario. Acidification potential for SSD turned out to be 35% higher than FA. The comparison of SSD with AD for their EPBT and normalized impacts indicated that the proposed SSD scenario has higher environmental sustainability than AD (70% lower impact), and is likely an economically better choice compared to conventional AD method (87% lower EPBT) for the future investment.


Journal of Sustainable Water in the Built Environment | 2016

Performance and Cost-Based Comparison of Green and Gray Infrastructure to Control Combined Sewer Overflows

Hassan Tavakol-Davani; Steven J. Burian; Jay Devkota; Defne Apul

Harvested rainwater systems and composting toilets are expected to be an important part of sustainable solutions in buildings. Yet, to this date, a model evaluating their economic and environmental impact has been missing. To address this need, a life cycle based model, EEAST was developed. EEAST was designed to compare the business as usual (BAU) case of using potable water for toilet flushing and irrigation to alternative scenarios of rainwater harvesting and composting toilet based technologies. In EEAST, building characteristics, occupancy, and precipitation are used to size the harvested rainwater and composting toilet systems. Then, life cycle costing and life cycle assessment methods are used to estimate cost, energy, and greenhouse gas (GHG) emission payback periods (PPs) for five alternative scenarios. The scenarios modeled include use of harvested rainwater for toilet flushing, for irrigation, or both; and use of composting toilets with or without harvested rainwater use for irrigation. A sample simulation using EEAST showed that for the office building modeled, the cost PPs were greater than energy PPs which in turn were greater than GHG emission PPs. This was primarily due to energy and emission intensive nature of the centralized water and wastewater infrastructure. The sample simulation also suggested that the composting toilets may have the best performance in all criteria. However, EEAST does not explicitly model solids management and as such may give composting toilets an unfair advantage compared to flush based toilets. EEAST results were found to be very sensitive to cost values used in the model. With the availability of EEAST, life cycle cost, energy, and GHG emissions can now be performed fairly easily by building designers and researchers. Future work is recommended to further improve EEAST and evaluate it for different types of buildings and climates so as to better understand when composting toilets and harvested rainwater systems outperform the BAU case in building design.


Energy and Environmental Science | 2017

Environmental analysis of perovskites and other relevant solar cell technologies in a tandem configuration

Ilke Celik; Adam B. Phillips; Zhaoning Song; Yanfa Yan; Randy J. Ellingson; Michael J. Heben; Defne Apul

Phytoplankton photosynthesis and community respiration are two key components of the carbon cycle that determine the magnitude of net ecosystem production and the balance between oxygen production and oxygen consumption in lakes. As part of the Keweenaw Interdisciplinary Transport Experiment in Superior (KITES) project, rates of community respiration were measured in 1998 and 1999 in nearand offshore waters along the Keweenaw Peninsula in Lake Superior. Because of the difficulties in measuring low rates of respiration, three methods were employed: bottle incubations, measurements of changes in hypolimnetic oxygen inventories, and rates of CO2 evolution from the lake surface. All three techniques yielded similar rates of CO2 production. Rates of community respiration (bottle incubations) ranged from 2 to 166 μg C/L/d; rates of hypolimnetic oxygen consumption ranged from 3 to 12 μg C/L/d; and rates of CO2 evasion from the lake (positive flux is out of lake) ranged from < 0 to 270 mg C/m2/d corresponding to volumetric rates of < 0 to 11 μg C/L/d. Little change in respiration rate with water depth was noted, but respiration rates near-shore were significantly higher than rates in offshore waters. Higher rates of respiration were measured in the El Nino year of 1998 as compared to 1999, but higher temperatures are not thought to be the direct cause. Rates of respiration were higher than simultaneously measured rates of photosynthesis, and there was a net evolution of CO2 from the lake; the lake appears to be net heterotrophic.


Environmental Science & Technology | 2017

Environmental Impacts from Photovoltaic Solar Cells Made with Single Walled Carbon Nanotubes

Ilke Celik; Brooke E. Mason; Adam B. Phillips; Michael J. Heben; Defne Apul

AbstractRainwater harvesting (RWH) is being used more often today as a water supply and stormwater management green infrastructure (GI). In recent years, GIs in urban water engineering have gained attention due to their lower lifecycle costs—in both implementation and operation phases—rather than traditional gray approaches. The research described in the present paper compared implementation of RWH systems to gray approaches previously designed as a part of the long-term control plan (LTCP) for combined sewer overflow (CSO) control in Toledo, Ohio. RWH scenarios in this study were defined based on different system capacities and release policies, and then combined gray and green scenarios were analyzed according to their hydrologic performance and cost. This study employed long-term continuous hydrologic and hydraulic (H&H) simulations as well as lifecycle cost (LCC) analysis techniques. The results showed that greening the LTCP via RWH could improve the lifecycle cost-effectiveness by 48%. The captured r...


Journal of Industrial Ecology | 2017

Agent-Based Modeling of Temporal and Spatial Dynamics in Life Cycle Sustainability Assessment

Susie Ruqun Wu; Xiaomeng Li; Defne Apul; Victoria Breeze; Ying Tang; Yi Fan; Jiquan Chen

Future high performance PV devices are expected to be tandem cells consisting of a low bandgap bottom cell and a high bandgap top cell. In this study, we developed a cradle-to-end of use life cycle assessment model to evaluate the environmental impacts, primary energy demand (PED), and energy payback time (EPBT) of four integrated two-terminal tandem solar cells composed of either Si bottom and lead-based perovskite (PKPb) top cells (Si/PKPb), copper indium gallium selenide (CIGS) and PKPb (CIGS/PKPb), copper zinc tin selenide (CZTS) and PKPb (CZTS/PKPb), or tin-lead based perovskite (PKSn,Pb) and PKPb (PKSn,Pb/PKPb). Environmental impacts from single junction Si solar cells were used as a reference point to interpret the results. We found that the environmental impacts for a 1 m2 area of a cell were largely determined by the bottom cell impacts and ranged from 50% (CZTS/PKPb) to 120% of those of a Si cell. The ITO layer used in Si/PKPb, CZTS/PKPb, and PKSn,Pb/PKPb is the most impactful after the Si and CIGS absorbers, and contributed up to 70% (in PKSn,Pb/PKPb) of the total impacts for these tandem PVs. Manufacturing a single two-terminal device was found to be a more environmentally friendly option than manufacturing two constituent single-junction cells and can reduce the environmental impacts by 30% due to the exclusion of extra glass, encapsulation, front contact and back contact layers. PED analysis indicated that PKSn,Pb/PKPb manufacturing has the least energy-intensive processing, and the EPBTs of Si/PKPb, CIGS/PKPb, CZTS/PKPb, and PKSn,Pb/PKPb tandems were found to be ∼13, ∼7, ∼2, and ∼1 months, respectively. On an impacts per kW h of Si basis the environmental impacts of all the devices were much higher (up to ∼10 times). These results can be attributed to the low photoconversion efficiency (PCE) and short lifetime that were assumed. While PKSn,Pb/PKPb has higher impacts than Si based on current low PCE (21%) and short lifetime (5 years) assumptions, it can outperform Si if its lifetime and PCE reach 16 years and 30%, respectively. Among the configurations considered, the PKSn,Pb/PKPb structure has the potential to be the most environmentally friendly technology.

Collaboration


Dive into the Defne Apul's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin H. Gardner

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge