Defu Hu
Beijing Forestry University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Defu Hu.
International Journal of Biological Sciences | 2016
Dong Zhang; Liping Yan; Ming Zhang; Hongjun Chu; Jie Cao; Kai Li; Defu Hu; Thomas Pape
The complete mitogenome of the horse stomach bot fly Gasterophilus pecorum (Fabricius) and a near-complete mitogenome of Wohlfahrts wound myiasis fly Wohlfahrtia magnifica (Schiner) were sequenced. The mitogenomes contain the typical 37 mitogenes found in metazoans, organized in the same order and orientation as in other cyclorrhaphan Diptera. Phylogenetic analyses of mitogenomes from 38 calyptrate taxa with and without two non-calyptrate outgroups were performed using Bayesian Inference and Maximum Likelihood. Three sub-analyses were performed on the concatenated data: (1) not partitioned; (2) partitioned by gene; (3) 3rd codon positions of protein-coding genes omitted. We estimated the contribution of each of the mitochondrial genes for phylogenetic analysis, as well as the effect of some popular methodologies on calyptrate phylogeny reconstruction. In the favoured trees, the Oestroidea are nested within the muscoid grade. Relationships at the family level within Oestroidea are (remaining Calliphoridae (Sarcophagidae (Oestridae, Pollenia + Tachinidae))). Our mito-phylogenetic reconstruction of the Calyptratae presents the most extensive taxon coverage so far, and the risk of long-branch attraction is reduced by an appropriate selection of outgroups. We find that in the Calyptratae the ND2, ND5, ND1, COIII, and COI genes are more phylogenetically informative compared with other mitochondrial protein-coding genes. Our study provides evidence that data partitioning and the inclusion of conserved tRNA genes have little influence on calyptrate phylogeny reconstruction, and that the 3rd codon positions of protein-coding genes are not saturated and therefore should be included.
Frontiers in Microbiology | 2017
Xiaolong Hu; Gang Liu; Aaron B.A. Shafer; Yuting Wei; Juntong Zhou; Shaobi Lin; Haibin Wu; Mi Zhou; Defu Hu; Shuqiang Liu
The gut ecosystem is characterized by dynamic and reciprocal interactions between the host and bacteria. Although characterizing microbiota for herbivores has become recognized as important tool for gauging species health, no study to date has investigated the bacterial communities and evaluated the age-related bacterial dynamics of musk deer. Moreover, gastrointestinal diseases have been hypothesized to be a limiting factor of population growth in captive musk deer. Here, high-throughput sequencing of the bacterial 16S rRNA gene was used to profile the fecal bacterial communities in juvenile and adult alpine and forest musk deer. The two musk deer species harbored similar bacterial communities at the phylum level, whereas the key genera for the two species were distinct. The bacterial communities were dominated by Firmicutes and Bacteroidetes, with the bacterial diversity being higher in forest musk deer. The Firmicutes to Bacteroidetes ratio also increased from juvenile to adult, while the bacterial diversity, within-group and between-group similarity, all increased with age. This work serves as the first sequence-based analysis of variation in bacterial communities within and between musk deer species, and demonstrates how the gut microbial community dynamics vary among closely related species and shift with age. As gastrointestinal diseases have been observed in captive populations, this study provides valuable data that might benefit captive management and future reintroduction programs.
PLOS ONE | 2015
Yongjun Zhang; Qing S. Cao; Daniel I. Rubenstein; Sen Zang; Melissa Songer; Peter Leimgruber; Hongjun Chu; Jie Cao; Kai Li; Defu Hu
Acquiring water is essential for all animals, but doing so is most challenging for desert-living animals. Recently Przewalski’s horse has been reintroduced to the desert area in China where the last wild surviving member of the species was seen before it vanished from China in the1960s. Its reintroduction placed it within the range of a close evolutionary relative, the con-generic Khulan. Determining whether or not these two species experience competition and whether or not such competition was responsible for the extinction of Przewalski’s horses in the wild over 50 years ago, requires identifying the fundamental and realized niches of both species. We remotely monitored the presence of both species at a variety of water points during the dry season in Kalamaili Nature Reserve, Xinjiang, China. Przewalski’s horses drank twice per day mostly during daylight hours at low salinity water sources while Khulans drank mostly at night usually at high salinity water points or those far from human residences. Spatial and temporal differences in water use enables coexistence, but suggest that Przewalski’s horses also restrict the actions of Khulan. Such differences in both the fundamental and realized niches were associated with differences in physiological tolerances for saline water and human activity as well as differences in aggression and dominance.
Biological Research | 2014
Lan He; Wenxia Wang; Linhai Li; Baoqing Liu; Gang Liu; Shuqiang Liu; Lei Qi; Defu Hu
BackgroundRestricted space and close contact with conspecifics in captivity may be stressful for musk deer, as they are highly territorial and solitary in the wild. So we tested the effects of crowding on stress of forest musk deer (Moschus berezovskii) in heterosexual groups, using fecal cortisol analysis as a non-invasive method. 32 healthy adults during non-breeding seasons were chose as our experimental objects. Group 1 was defined as higher crowding condition, with 10-15 m2/deer (6 enclosures, 10♀ and 6♂); group 2 was defined as lower crowding condition, with 23-33 m2/deer (6 enclosures, 10♀ and 6♂). Every enclosure contained 1 male and 3 female. These patterns had been existed for years.ResultsThe results showed that females in lower crowding condition (217.1 ± 9.5 ug/g) had significantly higher fecal cortisol levels than those in higher crowding condition (177.2 ± 12.1 ug/g). Interestingly, crowding seemed have no effect on male fecal cortisol levels (148.1 ± 9.1 ug/g and 140.5 ± 13.3 ug/g, respectively). At both groups, cortisol was significantly lower in males than in females.ConclusionsThese results showed that chronic crowding may affect stress status of captive forest musk deer. The captive environment should consider the space need for musk deer.
Frontiers in Microbiology | 2017
Yimeng Li; Xiaolong Hu; Shuang Yang; Juntong Zhou; Tianxiang Zhang; Lei Qi; Xiaoning Sun; Mengyuan Fan; Shanghua Xu; Muha Cha; Meishan Zhang; Shaobi Lin; Shuqiang Liu; Defu Hu
The large and complex gut microbiota in animals has profound effects on feed utilization and metabolism. Currently, gastrointestinal diseases due to dysregulated gut microbiota are considered important factors that limit growth of the captive forest musk deer population. Compared with captive forest musk deer, wild forest musk deer have a wider feeding range with no dietary limitations, and their gut microbiota are in a relatively natural state. However, no reports have compared the gut microbiota between wild and captive forest musk deer. To gain insight into the composition of gut microbiota in forest musk deer under different food-source conditions, we employed high-throughput 16S rRNA sequencing technology to investigate differences in the gut microbiota occurring between captive and wild forest musk deer. Both captive and wild forest musk deer showed similar microbiota at the phylum level, which consisted mainly of Firmicutes and Bacteroidetes, although significant differences were found in their relative abundances between both groups. α-Diversity results showed that no significant differences occurred in the microbiota between both groups, while β-diversity results showed that significant differences did occur in their microbiota compositions. In summary, our results provide important information for improving feed preparation for captive forest musk deer and implementing projects where captive forest musk deer are released into the wild.
Scientific Reports | 2015
Ruibo Cai; Aaron B.A. Shafer; Alice Laguardia; Zhenzhen Lin; Shuqiang Liu; Defu Hu
The forest musk deer (Moschus berezovskii) is a high elevation species distributed across western China and northern Vietnam. Once abundant, habitat loss and poaching has led to a dramatic decrease in population numbers prompting the IUCN to list the species as endangered. Here, we characterized the genetic diversity of a Major Histocompatibility Complex (MHC) locus and teased apart driving factors shaping its variation. Seven DRB exon 2 alleles were identified among a group of randomly sampled forest musk deer from a captive population in the Sichuan province of China. Compared to other endangered or captive ungulates, forest musk deer have relatively low levels of MHC genetic diversity. Non-synonymous substitutions primarily occurred in the putative peptide-binding region (PBR), with analyses suggesting that recombination and selection has shaped the genetic diversity across the locus. Specifically, inter-allelic recombination generated novel allelic combinations, with evidence for both positive selection acting on the PBR and negative selection on the non-PBR. An improved understanding of functional genetic variability of the MHC will facilitate better design and management of captive breeding programs for this endangered species.
Medical and Veterinary Entomology | 2014
W. Wang; Dong Zhang; Defu Hu; H. Chu; J. Cao; M. Ente; G. Jiang; Kai Li
Gasterophilosis is a significant threat to equids in the desert steppe of Xinjiang, China, where Gasterophilus pecorum (Fabricius) (Diptera: Gasterophilidae) is the dominant botfly species. A population analysis was conducted on 195 individual G. pecorum larvae from three host species, Przewalskis horse, the domestic horse and the Asiatic wild ass. The distribution of haplotypes of the maternally inherited mitochondrial cytochrome oxidase subunit I (COI) gene was analysed to assess the population differentiation of G. pecorum. High haplotype diversity was observed among G. pecorum populations from all host species, indicating that the G. pecorum infecting one host had multiple maternal ancestors. A phylogenetic tree showed six clades, suggesting a high degree of genetic differentiation. A constructed haplotype network described both the origin of the haplotypes and the population structure. The findings indicated that G. pecorum infections within Przewalskis horses were mainly transmitted from Asiatic wild asses. Clade 1 was found to be the most primitive group and to have evolved to be highly adaptable to the desert steppe. Clade 2 originated from Clade 1, potentially as a result of the annual migration of domestic horses. Revealing the differentiation of the G. pecorum population is important for elucidating the aetiology of Gasterophilus infection in Xinjiang and for planning appropriate control measures.
Mitochondrial DNA | 2014
Gang Liu; ChaoQun Xu; Qing Cao; Waltraut Zimmermann; Mellisa Songer; Shasha Zhao; Kai Li; Defu Hu
Abstract Background and Aims: Przewalski’s horses have been imported from the western zoos to China since 1985. Yet the genetic diversity in China’s populations has not been studied, thus lacking of such knowledge inevitably affects this population’s management. The aim of this study was to assess genetic diversity in Chinese population of Przewalski’s horses via mitochondrial DNA (mtDNA) control region and pedigree analysis. Materials and methods: Two captive and one reintroduced populations were examined based on mitochondrial DNA control region variation via fecal sampling from 2010 to 2012, together with pedigree analysis. Results: Amplification success rates of fecal mtDNA were as high as 96.2% (93.8%–100%), and were higher for sample in winter than in summer and autumn. Two haplotypes were identified and shared among three populations, but the proportion of individuals with each haplotype varied among the three populations (FST = 0.10874, p = 0.00978). Haplotype diversity in the released population (0.153) was much lower than that in the two captive populations (0.4011 and 0.4966), in accordance with the direction of increase in probability of identity at the dam lines. Conclusion: Future concerns in Przewalski’s horse population management should emphasize on strict reproduction control to minimize inbreeding in captivity, followed by long-term genetic diversity guidelines and non-invasive monitoring in the reintroduction programmes.
Scientific Reports | 2018
Xiaoning Sun; Ruibo Cai; Xuelin Jin; Aaron B.A. Shafer; Xiaolong Hu; Shuang Yang; Yimeng Li; Lei Qi; Shuqiang Liu; Defu Hu
Forest musk deer (Moschus berezovskii; FMD) are both economically valuable and highly endangered. A problem for FMD captive breeding programs has been the susceptibility of FMD to abscesses. To investigate the mechanisms of abscess development in FMD, the blood transcriptomes of three purulent and three healthy individuals were generated. A total of ~39.68 Gb bases were generated using Illumina HiSeq 4000 sequencing technology and 77,752 unigenes were identified after assembling. All the unigenes were annotated, with 63,531 (81.71%) mapping to at least one database. Based on these functional annotations, 45,798 coding sequences (CDS) were detected, along with 12,697 simple sequence repeats (SSRs) and 65,536 single nucleotide polymorphisms (SNPs). A total of 113 unigenes were found to be differentially expressed between healthy and purulent individuals. Functional annotation indicated that most of these differentially expressed genes were involved in the regulation of immune system processes, particularly those associated with parasitic and bacterial infection pathways.
Scientific Reports | 2017
Yimeng Li; Tianxiang Zhang; Mengyuan Fan; Juntong Zhou; Shuang Yang; Meishan Zhang; Lei Qi; Shaobi Lin; Defu Hu; Shuqiang Liu
The scented gland is an organ responsible for producing musk in muskrats. During musk secretion season, the metabolism of glandular cells increases in the scented glands and a large amount of musk is synthesised. In this study, we collected scented gland arterial blood from six healthy adult male muskrats during non-secretion season (November). We also obtained scented gland arterial blood, venous blood, and musk from six healthy adult males during secretion season (March). Qualitative and quantitative analyses of free amino acids in blood and musk were performed with an automated amino acid analyzer. Additionally, we employed RNA sequencing technology to study the expression patterns of amino acid metabolic pathways in scented glands. Amino acid profile analysis indicates that scented glands can concentrate amino acids during secretion season, and transcriptome analysis suggests that some amino acid metabolism-related genes undergo significant seasonal changes. In summary, scented gland amino acid metabolism displays seasonal differences. Elevated amino acid metabolic activity during secretion season sustains the glands’ secretory function.