Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Defu Zeng is active.

Publication


Featured researches published by Defu Zeng.


Blood | 2009

Reciprocal differentiation and tissue-specific pathogenesis of Th1, Th2, and Th17 cells in graft-versus-host disease

Tangsheng Yi; Ying Chen; Lin Wang; Gong Du; Daniel Huang; Dongchang Zhao; Heather F. Johnston; James Young; Ivan Todorov; Dale T. Umetsu; Lieping Chen; Yoichiro Iwakura; Fouad Kandeel; Stephen J. Forman; Defu Zeng

In acute graft-versus-host disease (GVHD), naive donor CD4(+) T cells recognize alloantigens on host antigen-presenting cells and differentiate into T helper (Th) subsets (Th1, Th2, and Th17 cells), but the role of Th subsets in GVHD pathogenesis is incompletely characterized. Here we report that, in an MHC-mismatched model of C57BL/6 donor to BALB/c recipient, WT donor CD4(+) T cells predominantly differentiated into Th1 cells and preferentially mediated GVHD tissue damage in gut and liver. However, absence of interferon-gamma (IFN-gamma) in CD4(+) T cells resulted in augmented Th2 and Th17 differentiation and exacerbated tissue damage in lung and skin; absence of both IL-4 and IFN-gamma resulted in augmented Th17 differentiation and preferential, although not exclusive, tissue damage in skin; and absence of both IFN-gamma and IL-17 led to further augmentation of Th2 differentiation and idiopathic pneumonia. The tissue-specific GVHD mediated by Th1, Th2, and Th17 cells was in part associated with their tissue-specific migration mediated by differential expression of chemokine receptors. Furthermore, lack of tissue expression of the IFN-gamma-inducible B7-H1 played a critical role in augmenting the Th2-mediated idiopathic pneumonia. These results indicate donor CD4(+) T cells can reciprocally differentiate into Th1, Th2, and Th17 cells that mediate organ-specific GVHD.


Blood | 2008

Absence of donor Th17 leads to augmented Th1 differentiation and exacerbated acute graft versus host disease

Tangsheng Yi; Dongchang Zhao; Chia-Lei Lin; Chunyan Zhang; Ying Chen; Ivan Todorov; Thomas LeBon; Fouad Kandeel; Stephen J. Forman; Defu Zeng

Th17 is a newly identified T-cell lineage that secretes proinflammatory cytokine IL-17. Th17 cells have been shown to play a critical role in mediating autoimmune diseases such as EAE, colitis, and arthritis, but their role in the pathogenesis of graft-versus-host disease (GVHD) is still unknown. Here we showed that, in an acute GVHD model of C57BL/6 (H-2(b)) donor to BALB/c (H-2(d)) recipient, IL-17(-/-) donor T cells manifested an augmented Th1 differentiation and IFN-gamma production and induced exacerbated acute GVHD. Severe tissue damage mediated by IL-17(-/-) donor T cells was associated with increased Th1 infiltration, up-regulation of chemokine receptors by donor T cells, and enhanced tissue expression of inflammatory chemokines. Administration of recombinant IL-17 and neutralizing IFN-gamma in the recipients given IL-17(-/-) donor cells ameliorated the acute GVHD. Furthermore, the regulation of Th1 differentiation by IL-17 or Th17 may be through its influence on host DCs. Our results indicate that donor Th17 cells can down-regulate Th1 differentiation and ameliorate acute GVHD in allogeneic recipients, and that treatments neutralizing proinflammatory cytokine IL-17 may augment acute GVHD as well as other inflammatory autoimmune diseases.


Journal of Immunology | 2000

Cutting edge: A role for CD1 in the pathogenesis of lupus in NZB/NZW mice

Defu Zeng; Mi Kyeong Lee; James W. Tung; Andrea Brendolan; Samuel Strober

Since anti-CD1 TCR transgenic T cells can activate syngeneic B cells via CD1 to secrete IgM and IgG and induce lupus in BALB/c mice, we studied the role of CD1 in the pathogenesis of lupus in NZB/NZW mice. Approximately 20% of B cells from the spleens of NZB/NZW mice expressed high levels of CD1 (CD1high B cells). The latter subset spontaneously produced large amounts of IgM anti-dsDNA Abs in vitro that was up to 25-fold higher than that of residual CD1int/low B cells. T cells in the NZB/NZW spleen proliferated vigorously to the CD1-transfected A20 B cell line, but not to the parent line. Treatment of NZB/NZW mice with anti-CD1 mAbs ameliorated the development of lupus. These results suggest that the CD1high B cells and their progeny are a major source of autoantibody production, and activation of B cells via CD1 may play an important role in the pathogenesis of lupus.


Journal of Immunology | 2001

Predominance of NK1.1^+TCRαβ^+ or DX5^+TCRαβ^+ T cells in mice conditioned with fractionated lymphoid irradiation protects against graft-versus-host disease : "natural suppressor" cells

Fengshuo Lan; Defu Zeng; Masanori Higuchi; Philip Huie; John P. Higgins; Samuel Strober

We developed a nonmyeloablative host conditioning regimen in a mouse model of MHC-mismatched bone marrow transplantation that not only reduces radiation toxicity, but also protects against graft-vs-host disease. The regimen of fractionated irradiation directed to the lymphoid tissues and depletive anti-T cell Abs results in a marked change in the residual host T cells, such that NK1.1+ or DX5+asialo-GM1+ T cells become the predominant T cell subset in the lymphoid tissues of C57BL/6 and BALB/c mice, respectively. The latter “natural suppressor” T cells protect hosts from graft-vs-host disease after the infusion of allogeneic bone marrow and peripheral blood cells that ordinarily kill hosts conditioned with sublethal or lethal total body irradiation. Protected hosts become stable mixed chimeras, but fail to show the early expansion and infiltration of donor T cells in the gut, liver, and blood associated with host tissue injury. Cytokine secretion and adoptive transfer studies using wild-type and IL-4−/− mice showed that protection afforded by NK1.1+ and DX5+asialo-GM1+ T cells derived from either donors or hosts conditioned with lymphoid irradiation is dependent on their secretion of high levels of IL-4.


Journal of Clinical Investigation | 2003

Activation of natural killer T cells in NZB/W mice induces Th1-type immune responses exacerbating lupus.

Defu Zeng; Yinping Liu; Stephane Sidobre; Mitchell Kronenberg; Samuel Strober

In vivo treatment of mice with the natural killer T (NKT) cell ligand, alpha-galactosylceramide (alphaGalCer), ameliorates autoimmune diabetes and experimental autoimmune encephalomyelitis (EAE) by shifting pathogenic Th1-type immune responses to nonpathogenic Th2-type responses. In the current study, in vivo activation of NKT cells in adult NZB/W mice by multiple injections of alphaGalCer induced an abnormal Th1-type immune response as compared with the Th2-type response observed in nonautoimmune C57BL/6 mice. This resulted in decreased serum levels of IgE, increased levels of IgG2a and IgG2a anti-double-stranded DNA (anti-dsDNA) Abs, and exacerbated lupus. Conversely, treatment of NZB/W mice with blocking anti-CD1d mAb augmented Th2-type responses, increased serum levels of IgE, decreased levels of IgG2a and IgG2a anti-dsDNA Abs, and ameliorated lupus. While total CD4+ T cells markedly augmented in vitro IgM anti-dsDNA Ab secretion by splenic B cells, the non-CD1d-reactive (CD1d-alphaGalCer tetramer-negative) CD4+ T cells (accounting for 95% of all CD4+ T cells) failed to augment Ab secretion. The CD1d-reactive tetramer-positive CD4+ T cells augmented anti-dsDNA Ab secretion about tenfold. In conclusion, activation of NKT cells augments Th1-type immune responses and autoantibody secretion that contribute to lupus development in adult NZB/W mice, and anti-CD1d mAb might be useful for treating lupus.


Blood | 2008

In vivo–activated CD103+CD4+ regulatory T cells ameliorate ongoing chronic graft-versus-host disease

Dongchang Zhao; Chunyan Zhang; Tangsheng Yi; Chia-Lei Lin; Ivan Todorov; Fouad Kandeel; Stephen J. Forman; Defu Zeng

CD103 (alphaEbeta7) has been shown to be an excellent marker for identifying in vivo-activated FoxP3(+)CD4(+) regulatory T (Treg) cells. It is unknown whether reinfusion of in vivo-activated donor-type CD103(+) Treg cells from recipient can ameliorate ongoing chronic graft-versus-host disease (GVHD). Here, we showed that, in a chronic GVHD model of DBA/2 (H-2(d)) donor to BALB/c (H-2(d)) recipient, donor-type CD103(+) Treg cells from recipients were much more potent than CD25(hi) natural Treg cells from donors in reversing clinical signs of GVHD and tissue damage. Furthermore, in contrast to CD25(hi) natural Treg cells, CD103(+) Treg cells expressed high levels of CCR5 but low levels of CD62L and directly migrated to GVHD target tissues. In addition, the CD103(+) Treg cells strongly suppressed donor CD4(+) T-cell proliferation; they also induced apoptosis of in vivo-activated CD4(+) T and B cells and significantly reduced pathogenic T and B cells in GVHD target tissues. These results indicate that CD103(+) Treg cells from chronic GVHD recipients are functional, and reinfusion of the CD103(+) Treg cells can shift the balance between Treg cells and pathogenic T cells in chronic GVHD recipients and ameliorate ongoing disease.


Biology of Blood and Marrow Transplantation | 2003

Host Conditioning with Total Lymphoid Irradiation and Antithymocyte Globulin Prevents Graft-versus- Host Disease: The Role of CD1-Reactive Natural Killer T Cells

Fengshuo Lan; Defu Zeng; Masanori Higuchi; John P. Higgins; Samuel Strober

Our previous studies in mice showed that the nonmyeloablative conditioning regimen of fractionated irradiation of the lymphoid tissues (total lymphoid irradiation; TLI) and depletive anti-T-cell antibodies (anti-thymocyte serum) markedly increased the percentage of regulatory DX5+ and natural killer 1.1+ T cells in the mouse spleen, and prevented acute lethal graft-versus-host disease (GVHD) in BALB/c mice (H-2(d)) following the transplantation of bone marrow (BM) and peripheral blood mononuclear cells (PBMC) from C57BL/6 (H-2(b)) donors. The object of the current study was to determine whether the TLI and anti-thymocyte serum regimen protected natural killer T-cell deficient CD1(-/-) BALB/c mice against GVHD after BM and PBMC transplantation from C57BL/6 donors, and whether a similar conditioning regimen of TLI and anti-thymocyte globulin (ATG) can prevent GVHD in Lewis rat (RT1(l)) hosts after BM and PBMC transplantation from ACI rat (RT1(a)) donors. The experimental results in mice showed that, although wild-type BALB/c hosts are protected in association with a marked increase in CD1- reactive T cells expressing the invariant TCR identified with a CD1 tetramer reagent; CD1(-/-) BALB/c hosts are not. Studies of chimeric donor cells in mice protected from GVHD showed donor T-cell polarization to a Th2 cytokine pattern. Results in rats showed that approximately 1000 fold more donor PBMC cells were required to induce a similar incidence of lethal GVHD in TLI and ATG conditioned hosts as compared with hosts conditioned with single-dose total-body irradiation or total-body irradiation and ATG. Surviving TLI and ATG conditioned rat hosts were complete chimeras. In conclusion, the TLI and ATG/anti-thymocyte serum conditioning regimen protects against GVHD in rats and mice, and regulatory natural killer T cells are required for protection.


Journal of Immunology | 2002

Immune Tolerance to Combined Organ and Bone Marrow Transplants After Fractionated Lymphoid Irradiation Involves Regulatory NK T Cells and Clonal Deletion

Masanori Higuchi; Defu Zeng; Judith A. Shizuru; Jennifer Gworek; Sussan Dejbakhsh-Jones; Masaru Taniguchi; Samuel Strober

Immune tolerance to organ transplants has been reported in laboratory animals and in humans after nonmyeloablative conditioning of the host and infusion of donor bone marrow cells. We examined the mechanisms of immune tolerance to mouse cardiac allografts in MHC-mismatched hosts that developed mixed chimerism after posttransplant conditioning with a 2-wk course of multiple doses of lymphoid tissue irradiation, depletive anti-T cell Abs, and an infusion of donor bone marrow cells. When CD1−/− or Jα281−/− hosts with markedly reduced NK T cells were used instead of wild-type hosts, then the conditioning regimen failed to induce tolerance to the heart allografts despite the development of mixed chimerism. Tolerance could be restored to the CD1−/− hosts by infusing enriched T cells from the bone marrow of wild-type mice containing CD1-reactive T cells but not from CD1−/− host-type mice. Tolerance could not be induced in either IL-4−/− or IL-10−/− hosts given the regimen despite the development of chimerism and clonal deletion of host T cells to donor MHC-Ags in the IL-10−/− hosts. We conclude that immune tolerance to bone marrow transplants involves clonal deletion, and tolerance to heart allografts in this model also involves regulatory CD1-reactive NK T cells.


Proceedings of the National Academy of Sciences of the United States of America | 2008

HDAC inhibitor reduces cytokine storm and facilitates induction of chimerism that reverses lupus in anti-CD3 conditioning regimen.

Nainong Li; Dongchang Zhao; Mark Kirschbaum; Chunyan Zhang; Chia-Lei Lin; Ivan Todorov; Fouad Kandeel; Stephen J. Forman; Defu Zeng

In allogeneic hematopoietic cell transplantation (HCT), donor T cell-mediated graft versus host leukemia (GVL) and graft versus autoimmune (GVA) activity play critical roles in treatment of hematological malignancies and refractory autoimmune diseases. However, graft versus host disease (GVHD), which sometimes can be fatal, remains a major obstacle in classical HCT, where recipients are conditioned with total body irradiation or high-dose chemotherapy. We previously reported that anti-CD3 conditioning allows donor CD8+ T cells to facilitate engraftment and mediate GVL without causing GVHD. However, the clinical application of this radiation-free and GVHD preventative conditioning regimen is hindered by the cytokine storm syndrome triggered by anti-CD3 and the high-dose donor bone marrow (BM) cells required for induction of chimerism. Histone deacetylase (HDAC) inhibitors such as suberoylanilide hydroxamic acid (SAHA) are known to induce apoptosis of cancer cells and reduce production of proinflammatory cytokines by nonmalignant cells. Here, we report that SAHA inhibits the proliferative and cytotoxic activity of anti-CD3-activated T cells. Administration of low-dose SAHA reduces cytokine production and ameliorates the cytokine storm syndrome triggered by anti-CD3. Conditioning with anti-CD3 and SAHA allows induction of chimerism with lower doses of donor BM cells in old nonautoimmune and autoimmune lupus mice. In addition, conditioning with anti-CD3 and SAHA allows donor CD8+ T cell-mediated GVA activity to reverse lupus glomerulonephritis without causing GVHD. These results indicate that conditioning with anti-CD3 and HDAC inhibitors represent a radiation-free and GVHD-preventative regimen with clinical application potential.


Journal of Immunology | 2013

Thymic Damage, Impaired Negative Selection, and Development of Chronic Graft-versus-Host Disease Caused by Donor CD4+ and CD8+ T Cells

Tao Wu; James Young; Heather F. Johnston; Xiong Ni; Ruishu Deng; Jeremy J. Racine; Miao Wang; Audrey Wang; Ivan Todorov; Jianmin Wang; Defu Zeng

Prevention of chronic graft-versus-host disease (cGVHD) remains a major challenge in allogeneic hematopoietic cell transplantation (HCT) owing to limited understanding of cGVHD pathogenesis and lack of appropriate animal models. In this study, we report that, in classical acute GVHD models with C57BL/6 donors and MHC-mismatched BALB/c recipients and with C3H.SW donors and MHC-matched C57BL/6 recipients, GVHD recipients surviving for >60 d after HCT developed cGVHD characterized by cutaneous fibrosis, tissue damage in the salivary gland, and the presence of serum autoantibodies. Donor CD8+ T cells were more potent than CD4+ T cells for inducing cGVHD. The recipient thymus and de novo–generated, donor-derived CD4+ T cells were required for induction of cGVHD by donor CD8+ T cells but not by donor CD4+ T cells. Donor CD8+ T cells preferentially damaged recipient medullary thymic epithelial cells and impaired negative selection, resulting in production of autoreactive CD4+ T cells that perpetuated damage to the thymus and augmented the development of cGVHD. Short-term anti-CD4 mAb treatment early after HCT enabled recovery from thymic damage and prevented cGVHD. These results demonstrate that donor CD8+ T cells cause cGVHD solely through thymic-dependent mechanisms, whereas CD4+ T cells can cause cGVHD through either thymic-dependent or independent mechanisms.

Collaboration


Dive into the Defu Zeng's collaboration.

Top Co-Authors

Avatar

Stephen J. Forman

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivan Todorov

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jeremy J. Racine

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fouad Kandeel

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Dongchang Zhao

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Tangsheng Yi

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Chia-Lei Lin

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

James Young

City of Hope National Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge