Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deguang Yu is active.

Publication


Featured researches published by Deguang Yu.


Computational Biology and Chemistry | 2017

Genome-wide identification and characterization of conserved and novel microRNAs in grass carp (Ctenopharyngodon idella) by deep sequencing

Wangbao Gong; Yong Huang; Jun Xie; Guangjun Wang; Deguang Yu; Xihong Sun

MicroRNAs (miRNAs) are post-transcriptional regulators which bind to target to regulate protein expression by repressing translation or promoting degradation of the target mRNA. Studies have shown that deep sequencing is a powerful tool for the identification of miRNAs, and it is believed that may more miRNAs remain to be discovered in grass carp. In the present study, a pool of equal amounts of RNA obtained from 8 different adult grass carp tissues (spleen, liver, muscle, kidney, skin, testis, gut and heart) was sequenced using deep sequencing technology. A total of 16.579.334 raw reads were yielded from the pooled small RNA library. Using bioinformatics analysis, we identified 160 conserved miRNAs and 18 novel miRNAs in grass carp. Randomly selected 6 conserved and 2 novel miRNAs were confirmed their expression by stem-loop qRT-PCR assay. Furthermore, the 1212 potential targets of these miRNAs were predicted using miRNA target prediction tool. GO and KEGG pathway enrichment analyses indicated relevant biological processes. Our study provides the first genome-wide investigation of miRNAs from 8 mixed tissues of grass carp, and the data obtained expand the known grass carp miRNA inventory and provide a basis for further understanding functions of grass carp miRNAs.


Comparative and Functional Genomics | 2014

Gene Expression Profiling of Grass Carp (Ctenopharyngodon idellus) and Crisp Grass Carp.

Ermeng Yu; Jun Xie; Guangjun Wang; Deguang Yu; Wangbao Gong; Zhifei Li; Haiying Wang; Yun Xia; Nan Wei

Grass carp (Ctenopharyngodon idellus) is one of the most important freshwater fish that is native to China, and crisp grass carp is a kind of high value-added fishes which have higher muscle firmness. To investigate biological functions and possible signal transduction pathways that address muscle firmness increase of crisp grass carp, microarray analysis of 14,900 transcripts was performed. Compared with grass carp, 127 genes were upregulated and 114 genes were downregulated in crisp grass carp. Gene ontology (GO) analysis revealed 30 GOs of differentially expressed genes in crisp grass carp. And strong correlation with muscle firmness increase of crisp grass carp was found for these genes from differentiation of muscle fibers and deposition of ECM, and also glycolysis/gluconeogenesis pathway and calcium metabolism may contribute to muscle firmness increase. In addition, a number of genes with unknown functions may be related to muscle firmness, and these genes are still further explored. Overall, these results had been demonstrated to play important roles in clarifying the molecular mechanism of muscle firmness increase in crisp grass carp.


Scientific Reports | 2017

Proteomic signature of muscle fibre hyperplasia in response to faba bean intake in grass carp

Ermeng Yu; Hao-Fang Zhang; Zhifei Li; Guangjun Wang; Hong-Kai Wu; Jun Xie; Deguang Yu; Yun Xia; Kai Zhang; Wang-Bo Gong

Fish muscle growth is important for the rapidly developing global aquaculture industry, particularly with respect to production and quality. Changes in muscle fibre size are accomplished by altering the balance between protein synthesis and proteolysis. However, our understanding regarding the effects of different protein sources on fish muscle proteins is still limited. Here we report on the proteomic profile of muscle fibre hyperplasia in grass carp fed only with whole faba bean. From the results, a total of 99 significantly changed proteins after muscle hyperplasia increase were identified (p < 0.05, ratio <0.5 or >2). Protein–protein interaction analysis demonstrated the presence of a network containing 56 differentially expressed proteins, and muscle fibre hyperplasia was closely related to a protein–protein network of 12 muscle component proteins. Muscle fibre hyperplasia was also accompanied by decreased abundance in the fatty acid degradation and calcium signalling pathways. In addition, metabolism via the pentose phosphate pathway decreased in grass carp after ingestion of faba bean, leading to haemolysis. These findings could provide a reference for the prevention and treatment of human glucose-6-phosphate dehydrogenase deficiency (“favism”).


Fems Microbiology Letters | 2017

Microbial succession in biofilms growing on artificial substratum in subtropical freshwater aquaculture ponds

Zhifei Li; Jianfeng Che; Jun Xie; Guangjun Wang; Ermeng Yu; Yun Xia; Deguang Yu; Kai Zhang

Abstract Biofilms can be used to improve the water quality in aquaculture ponds, and elucidating the process of microbial succession in biofilms would allow the characterization of metabolic processes and permit optimization. In the present study, microbial succession of a biofilm growing on artificial substrata in a subtropical freshwater pond was investigated by high‐throughput sequencing. Providing artificial substrata effectively reduced the concentrations of total nitrogen and total phosphorus in the pond. Relatively stable microbiota were formed after approximately 1 week. The dominant phyla in the mature biofilm were Proteobacteria, Bacteroidetes, Firmicutes and Actinobacteria. The relative abundances of denitrifiers and phosphorus‐removing bacteria, such as those in Comamonadaceae and Neisseriaceae, were significantly increased. The use of avermectin B1 changed the community structure of the microbiota; the microbiota were more similar to those at Week 0 than to those at Week 3. However, the microbial community structure recovered after approximately 1 week. Our results indicate that using artificial substrata can create a habitat for denitrifiers and phosphorus‐removing bacteria, and thereby improve pond water quality. This study provided insight into how the use of artificial substrata could improve water quality and elucidated the environment‐biofilm relationship in a subtropical freshwater pond.


Journal of Oceanology and Limnology | 2018

Denitrification potential evaluation of a newly indigenous aerobic denitrifier isolated from largemouth bass Micropterus salmoides culture pond

Cuicui Wang; Kai Zhang; Jun Xie; Qigen Liu; Deguang Yu; Guangjun Wang; Ermeng Yu; Wangbao Gong; Zhifei Li

This work evaluates the application potential of a new indigenous aerobic denitrifier, strain Pseudomonas CW-2, isolated from a largemouth bass culture pond. The rate of ammonium-N removal by strain CW-2 was approximately 97% at a DO concentration of 5.2 mg/L. Furthermore, when nitrate and ammonia coexisted, the strain gave priority to assimilating ammonia, and thereafter to denitrification. Under optimal cultivation conditions, citrate and acetate were the carbon resources, C/N was 8, dissolved oxygen was 5.2 mg/L, and pH was 7; the removal rate of ammonium reached nearly 90%. The changing patterns of different bacteria in strain CW-2-treated and the control pond water were also compared. Lower levels of ammonia, nitrite, and phosphates were observed in the treated water as compared with the controls. Meanwhile, phylum-level distributions of the bacterial OTUs revealed that Proteobacteria, Bacteroidetes, Planctomycetes, and Nitrospirae continuously changed their relative abundances in relation to carbon and the addition of strain CW-2; this finding implies that the conventional denitrification process was weakened under the effects of carbon or the presence of strain CW-2. We propose that strain CW-2 is a promising organism for the removal of ammonium in intensive fish culture systems, according to our evaluations of its denitrification performance.


Genomics | 2018

Identification and expression analysis of miRNA in hybrid snakehead by deep sequencing approach and their targets prediction

Wangbao Gong; Yong Huang; Jun Xie; Guangjun Wang; Deguang Yu; Xihong Sun; Kai Zhang; Zhifei Li; Yu Ermeng; Jingjing Tian; Yun Zhu

MicroRNAs (miRNAs) play important regulatory roles in numerous biological processes, but there is no report on miRNAs of hybrid snakehead. In this study, four independent small RNA libraries were constructed from the spleen, liver kidney and muscle of hybrid snakehead. These libraries were sequenced using deep sequencing technology, as result, a total of 1,067,172, 1,152,002, 1,653,941 and 970,866 clean reads from these four libraries were obtained. 252 known miRNAs and 63 putative novel miRNAs in these small RNA dataset were identified. The stem-loop RT-qPCR analysis indicated that eight known miRNAs and two novel miRNAs show different expression in eight different kinds of tissues. For better understanding the functions of miRNAs, 95,947 predicated target genes were analyzed by GO and their pathways, the results indicated that these targets of the identified miRNAs are involved in a broad range of physiological functions.


Genomics | 2018

Identification and comparative analysis of the miRNA expression profiles from four tissues of Micropterus salmoides using deep sequencing

Wangbao Gong; Yong Huang; Jun Xie; Guangjun Wang; Deguang Yu; Kai Zhang; Zhifei Li; Ermeng Yu; Jingjing Tian; Yun Zhu

In the present study, four small RNA libraries were constructed from an M. salmoides population and sequenced using deep sequencing technology. A total of 9,888,822; 8,519,365; 20,566,198; and 15,762,254 raw reads representing 666,097; 755,711; 978,923; and 840,175 unique sequences were obtained from the spleen, liver, kidney, and muscle libraries, respectively. As a result, 509 known miRNAs belonging to 143 families and 1157 novel miRNAs were identified. The miRNAs displayed diverse expression levels among the four libraries, among which most of the known miRNAs were expressed at higher levels than the novel miRNAs. Furthermore, stem-loop qRT-PCR was applied to validate and profile the expression of the differentially expressed miRNAs in the four different tissues, which revealed that some miRNAs showed tissue specific expression. The identification of miRNAs in M. salmoides will provide new information and enhance our understanding of the functions of miRNAs in regulating biological processes.


Gene | 2018

Smad4-dependent regulation of type I collagen expression in the muscle of grass carp fed with faba bean

Er-meng Yu; Ling-ling Ma; Hong Ji; Zhifei Li; Guangjun Wang; Jun Xie; Deguang Yu; Gen Kaneko; Jingjing Tian; Kai Zhang; Wangbao Gong

Smad4 is the key regulator in the transforming growth factor β1 (TGF-β1)/Smads signal pathway, and is also the crux of the regulation of type I collagen expression in mammals. In fish, however, the relationship between Smad4 and type I collagen is still unknown. Given the widely accepted importance of type I collagen in fish muscle hardness, we seek to explore this issue by analyzing the expressions of the TGF-β1/Smads pathway molecules and type I collagen in the muscle of crisp grass carp fed with faba bean, which shows increased muscle hardness. The study found that (1) in the process of feeding the grass carp with faba bean, the mRNA and protein expressions of TGF-β1, Smad2 and Smad4 all increased along with the increase of type I collagen expression (Col1α1 and Col1α2); (2) one day after the injection of Smad4 over-expression vector, both mRNA and protein expressions of Col1α1 and Col1α2 significantly increased, reaching the maximum on the 2nd and 5th day, respectively; (3) one day after the injection of Smad4 RNAi interference vector, the mRNA and protein expressions of Col1α1 and Col1α2 decreased, reaching the minimum on the 5th day. These results revealed that Smad4 is the major regulator of type I collagen in the muscle of grass carp fed with faba bean. This study would provide an important mechanistic basis for nutritional regulation of type I collagen in the muscle of fish.


Frontiers in Microbiology | 2018

Broad Bean (Vicia faba L.) Induces Intestinal Inflammation in Grass Carp (Ctenopharyngodon idellus C. et V) by Increasing Relative Abundances of Intestinal Gram-Negative and Flagellated Bacteria

Zhifei Li; Ermeng Yu; Guangjun Wang; Deguang Yu; Kai Zhang; Wangbao Gong; Jun Xie

Constant consumption of broad bean (Vicia faba L.) induces intestinal inflammation and reduces growth rate in grass carp (Ctenopharyngodon idellus C. et V). However, the mechanisms underlying these effects are unclear. In mammalian models of inflammatory bowel disease (IBD), endotoxin and flagellin cause intestinal inflammation through upregulation of tumor necrosis factor (TNF)-α expression. We therefore speculated that broad bean consumption alters intestinal microbiota composition, thereby increasing the relative abundance of endotoxin-producing Gram-negative and flagellated bacteria and resulting in upregulation of TNF-α and intestinal inflammation in grass carp. We tested this hypothesis by comparing intestinal microbiota compositions of grass carp fed broad bean (GCBB), hybrid giant napier (Pennisetum sinese Roxb, GCHG), or formula feed (GCFF) by 16S rRNA gene sequencing. We also performed a histological analysis of the intestinal inner wall by scanning electron microscopy and measured intestinal wall and serum concentrations of TNF-α. Our results revealed epithelial cell damage including microvillus effacement and synechia along with increased TNF-α levels in the intestinal wall in the GCBB group as compared to the GCHG and GCFF groups. The relative abundances of Gram-negative and flagellated bacteria were also higher in the GCBB group than in the GCHG and GCFF groups; this was accompanied by upregulation of genes expressing endotoxin and flagellin in intestinal microbiota. Thus, broad bean-induced intestinal inflammation in grass carp shares features with IBD. Our findings demonstrate that the microbiome in fish is directly influenced by diet and provide a reference for deconstructing host–intestinal microbiota interactions.


Russian Journal of Bioorganic Chemistry | 2017

Genome-wide identification of novel microRNAs from genome sequences using computational approach in the mudskipper (Boleophthalmus pectinirostris)

Wangbao Gong; Yong Huang; Jun Xie; Guangjun Wang; Deguang Yu; Xihong Sun

MicroRNAs (miRNAs), approximately 22 nucleotides (nt) long, are small, non-coding RNA molecules with important regulatory functions in gene expression. They are mostly conserved among the organisms and this conservation makes them a good source for the identification of novel miRNAs by computational genomic homology. The miRNA repertoire of a major aquaculture species, Boleophthalmus pectinirostris, has been unknown until recently. Currently, the B. pectinirostris whole-genome sequences have been completed, making it more convenient for us to focus on computational prediction for novel miRNA homologs. Following a range of strict filtering criteria, a total of 62 potential miRNAs were identified for the first time; they belong to 39 different miRNA families. All these miRNAs were observed in the stem portion of the stable stem–loop structures. The minimum free energy (MFE) of the predicted miRNAs ranged from −21.6 to −62.7 kcal/mol with an average of −39.2 kcal/mol. The A + U ranged from 32.5 to 69.1% with an average value of 52.2%. The phylogenetic analysis of predicted miRNAs revealed that miR-23a-3p, miR-184-3p, miR-214-5p, and miR-338-3p from B. pectinirostris are evolutionary highly conserved showing more similarity with other fish species. To verify the predicted miRNAs, selected miRNAs representing 16 of the 39 families were confirmed by stem–loop RT-PCR, indicating that the computational approach that we used to identify the miRNAs is a highly efficient and affordable alternative method. Taken together, these findings provide a reference point for further research on miRNAs identification in fish species, meanwhile, our study also will be useful for further insight into biological functions of miRNAs and improved understanding of genome in B. pectinirostris.

Collaboration


Dive into the Deguang Yu's collaboration.

Top Co-Authors

Avatar

Guangjun Wang

Chinese Academy of Fishery Sciences

View shared research outputs
Top Co-Authors

Avatar

Wangbao Gong

Chinese Academy of Fishery Sciences

View shared research outputs
Top Co-Authors

Avatar

Ermeng Yu

Chinese Academy of Fishery Sciences

View shared research outputs
Top Co-Authors

Avatar

Jun Xie

Chinese Academy of Fishery Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhifei Li

Chinese Academy of Fishery Sciences

View shared research outputs
Top Co-Authors

Avatar

Kai Zhang

Chinese Academy of Fishery Sciences

View shared research outputs
Top Co-Authors

Avatar

Yun Xia

Chinese Academy of Fishery Sciences

View shared research outputs
Top Co-Authors

Avatar

Yong Huang

Henan University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xihong Sun

Henan University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge