Deivid Costa Soares
Federal University of Rio de Janeiro
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Deivid Costa Soares.
Phytochemistry | 2011
C. Ferreira; Deivid Costa Soares; C.B. Barreto-Junior; M.T. Nascimento; L. Freire-de-Lima; J.C. Delorenzi; M.E.F. Lima; Georgia C. Atella; E. Folly; T.M.U. Carvalho; Elvira M. Saraiva; L.H. Pinto-da-Silva
Leishmaniasis is a tropical disease caused by protozoan parasites of the genus Leishmania which affects 12 million people worldwide. The discovery of drugs for the treatment of leishmaniasis is a pressing concern in global health programs. The aim of this study aim was to evaluate the leishmanicidal effect of piperine and its derivatives/analogues on Leishmania amazonensis. Our results showed that piperine and phenylamide are active against promastigotes and amastigotes in infected macrophages. Both drugs induced mitochondrial swelling, loose kinetoplast DNA, and led to loss of mitochondrial membrane potential. The promastigote cell cycle was also affected with an increase in the G1 phase cells and a decrease in the S-phase cells, respectively, after piperine and phenylamide treatment. Lipid analysis of promastigotes showed that piperine reduced triglyceride, diacylglycerol, and monoacylglycerol contents, whereas phenylamide only reduced diacylglycerol levels. Both drugs were deemed non toxic to macrophages at 50 μM as assessed by XTT (sodium 2,3,-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)-carbonyl]-2H-tetrazolium inner salt), Trypan blue exclusion, and phagocytosis assays, whereas low toxicity was noted at concentrations higher than 150 μM. None of the drugs induced nitric oxide (NO) production. By contrast, piperine reduced NO production in activated macrophages. The isobologram analysis showed that piperine and phenylamide acted synergistically on the parasites suggesting that they affect different target mechanisms. These results indicate that piperine and its phenylamide analogue are candidates for development of drugs for cutaneous leishmaniasis treatment.
The FASEB Journal | 2010
Renata M. Pereira; Karina Luiza Dias Teixeira; Victor Barreto-de-Souza; Teresa Cristina Calegari-Silva; Luiz Dione Barbosa De-Melo; Deivid Costa Soares; Dumith Chequer Bou-Habib; Aristóbolo M. Silva; Elvira M. Saraiva; Ulisses Gazos Lopes
The evolution of Leishmania infection depends on the balance between microbicidal and suppressor macrophage functions. Double‐stranded RNA (dsRNA)‐activated protein kinase R (PKR), a classic antiviral protein, is able to regulate a number of signaling pathways and macrophage functions. We investigated the possible role of PKR in the modulation of Leishmania infection. Our data demonstrated that Leishmania amazonensis infection led to PKR activation and increased PKR levels. Consistently, in macrophages from PKR knockout 129Sv/Ev mice and RAW‐264.7 cells stably expressing a dominant‐negative (DN) construct of PKR (DN‐PKR), L. amazonensis infection was strongly reduced. The treatment of infected macrophages with the synthetic double‐stranded RNA poly(I:C), a potent PKR inductor, increased L. amazonensis intracellular proliferation. This effect was reversed by 2‐aminopurine (2‐AP), a pharmacological inhibitor of PKR, as well as by the expression of DN‐PKR. NO release induced by dsRNA treatment was inhibited by L. amazonensis through NF‐κB modulation. PKR activation induced by dsRNA also resulted in IL‐10 production, whose neutralization with specific antibody completely abrogated L. amazonensis proliferation. Our data demonstrated a new role of PKR in protozoan parasitic infection through IL‐10 modulation.—Pereira, R. M. S., Teixeira, K. L. D., Barreto‐de‐Souza, V. Calegari‐Silva, T. C., De‐Melo, D. B., Soares, D. C., Bou‐Habib, D. C., Silva, A. M., Saraiva, E. M., Lopes, U. G. Novel role for the double‐stranded RNA‐activated protein kinase PKR: modulation of macrophage infection by the protozoan parasite Leishmania. FASEB J. 24, 617–626 (2010). www.fasebj.org
Immunology Letters | 2009
Teresa Cristina Calegari-Silva; Renata M. Pereira; Luiz Dione Barbosa De-Melo; Elvira M. Saraiva; Deivid Costa Soares; Maria Bellio; Ulisses G. Lopes
Host invasion by pathogens is frequently associated with the activation of nuclear factor kappaB (NF-kappaB), which modulates the expression of genes involved in the immunological response of the host. However, pathogens may also subvert these mechanisms to secure their survival. We describe the effect of Leishmania amazonensis infection on NF-kappaB transcriptional factor activation in macrophages and the subsequent reduction in inducible nitric oxide synthase (iNOS) expression. L. amazonensis promastigote infection activates the p50/p50 NF-kappaB complex, a classic transcriptional repressor. Interestingly, L. amazonensis promotes the change of the classical p65/p50 NF-kappaB dimer induced by LPS, leading to the p50/p50 NF-kappaB complex activation in macrophages stimulated with LPS. Moreover, this parasite promotes the reduction of p65 total levels in infected macrophages. All these effects contribute to the observation that this parasite is able to restrain the NF-kappaB-dependent transcriptional activity induced by LPS. Strikingly, L. amazonensis reduces the mRNA levels of the iNOS in addition to protein expression and the production of nitric oxide in LPS-stimulated macrophages. Accordingly, as revealed by reporter-gene assays, L. amazonensis-induced iNOS repression requires NF-kappaB sites in the iNOS promoter region. In summary, our results suggest that L. amazonensis has developed an adaptive strategy to escape from host defense by activating the NF-kappaB repressor complex p50/p50. The activation of this specific host transcriptional response negatively regulates the expression of iNOS, favoring the establishment and success of L. amazonensis infection.
Evidence-based Complementary and Alternative Medicine | 2013
Deivid Costa Soares; Nathalya A. Portella; Mônica Freiman de Souza Ramos; Antonio Carlos Siani; Elvira M. Saraiva
This study investigated the leishmanicidal activity against Leishmania amazonensis of four commercial oils from Copaifera spp. named as C1, C2, C3, and C4, the sesquiterpene and diterpene pools obtained from distilling C4, and isolated β-caryophyllene (CAR). Copaiba oils chemical compositions were analyzed by gas chromatography and correlated with biological activities. Diterpenes-rich oils C2 and C3 showed antipromastigote activity. Sesquiterpenes-rich C1 and C4, and isolated CAR presented a dose-dependent activity against intracellular amastigotes, with IC50s of 2.9 µg/mL, 2.3 µg/mL, and 1.3 µg/mL (6.4 µM), respectively. Based on the highest antiamastigote activity and the low toxicity to the host cells, C4 was steamdistillated to separate pools of sesquiterpenes and diterpenes. Both pools were less active against L. amazonensis and more toxic for the macrophages than the whole C4 oil. The leishmanicidal activity of C3 and C4 oils, as well as C4 fractions and CAR, appears to be independent of nitric oxide production by macrophages. This study pointed out β-caryophyllene as an effective antileishmanial compound and also to its role as potential chemical marker in copaiba oils or fractions derived thereof, aiming further development of this rainforest raw material for leishmaniasis therapy.
PLOS Neglected Tropical Diseases | 2012
Deivid Costa Soares; Teresa Cristina Calegari-Silva; Ulisses G. Lopes; Valéria Laneuville Teixeira; Izabel Christina Nunes de Palmer Paixão; Claudio Cesar Cirne-Santos; Dumith Chequer Bou-Habib; Elvira M. Saraiva
Background Chemotherapy for leishmaniasis, a disease caused by Leishmania parasites, is expensive and causes side effects. Furthermore, parasite resistance constitutes an increasing problem, and new drugs against this disease are needed. In this study, we examine the effect of the compound 8,10,18-trihydroxy-2,6-dolabelladiene (Dolabelladienetriol), on Leishmania growth in macrophages. The ability of this compound to modulate macrophage function is also described. Methodology/Principal Findings Leishmania-infected macrophages were treated with Dolabelladienetriol, and parasite growth was measured using an infectivity index. Nitric oxide (NO), TNF-α and TGF-β production were assayed in macrophages using specific assays. NF-kB nuclear translocation was analyzed by western blot. Dolabelladienetriol inhibited Leishmania in a dose-dependent manner; the IC50 was 44 µM. Dolabelladienetriol diminished NO, TNF-α and TGF-β production in uninfected and Leishmania-infected macrophages and reduced NF-kB nuclear translocation. Dolabelladienetriol inhibited Leishmania infection even when the parasite growth was exacerbated by either IL-10 or TGF-β. In addition, Dolabelladienetriol inhibited Leishmania growth in HIV-1-co-infected human macrophages. Conclusion Our results indicate that Dolabelladienetriol significantly inhibits Leishmania in macrophages even in the presence of factors that exacerbate parasite growth, such as IL-10, TGF-β and HIV-1 co-infection. Our results suggest that Dolabelladienetriol is a promising candidate for future studies regarding treatment of leishmaniasis, associated or not with HIV-1 infection.
Parasitology International | 2010
Deivid Costa Soares; Alexandre L.S. Andrade; Jan C. Delorenzi; Jefferson Rocha de A. Silva; Leonardo Freire-de-Lima; Camila Alves Bandeira Falcão; Angelo C. Pinto; Bartira Rossi-Bergmann; Elvira M. Saraiva
Himatanthus sucuuba (HsL) latex exhibited a potent leishmanicidal activity against intracellular amastigotes of Leishmania amazonensis, a causative agent of cutaneous leishmaniasis. HsL inhibited intracellular amastigote growth in a dose-dependent manner (IC(50)=15.7microg/mL). Moreover, HsL increased nitric oxide (NO) and Tumor Nuclear Factor-alpha (TNF-alpha) and decreased Transforming Growth Factor-beta (TGF-beta) production in macrophages. As assessed by plasma membrane integrity and mitochondrial activity, HsL showed low toxicity for host macrophages. HsL in vivo was active by the oral route, reducing the parasite load in established footpad lesions after only five doses. In summary, these findings support HsL as an interesting candidate for further evaluations regarding its potential application as a therapeutical agent against Leishmania.
Antimicrobial Agents and Chemotherapy | 2014
Christian Ferreira; Deivid Costa Soares; Michelle T. C. Nascimento; Lucia Helena Pinto-da-Silva; Carolina Galvão Sarzedas; Luzineide W. Tinoco; Elvira M. Saraiva
ABSTRACT Resveratrol is a polyphenol found in black grapes and red wine and has many biological activities. In this study, we evaluated the effect of resveratrol alone and in association with amphotericin B (AMB) against Leishmania amazonensis. Our results demonstrate that resveratrol possesses both antipromastigote and antiamastigote effects, with 50% inhibitory concentrations (IC50s) of 27 and 42 μM, respectively. The association of resveratrol with AMB showed synergy for L. amazonensis amastigotes, as demonstrated by the mean sums of fractional inhibitory index concentration (mean ΣFIC) of 0.483, although for promastigotes, this association was indifferent. Treatment with resveratrol increased the percentage of promastigotes in the sub-G0/G1 phase of the cell cycle, reduced the mitochondrial potential, and showed an elevated choline peak and CH2-to-CH3 ratio in the nuclear magnetic resonance (NMR) spectroscopy analysis; all these features indicate parasite death. Resveratrol also decreased the activity of the enzyme arginase in uninfected and infected macrophages with and without stimulation with interleukin-4 (IL-4), also implicating arginase inhibition in parasite death. The anti-Leishmania effect of resveratrol and its potential synergistic association with AMB indicate that these compounds should be subjected to further studies of drug association therapy in vivo.
Phytochemistry | 2009
Maria das Graças Miranda Danelli; Deivid Costa Soares; Heber dos Santos Abreu; L.M.T. Peçanha; Elvira M. Saraiva
Leishmanicidal activity of 6alpha, 7alpha, 15beta, 16beta, 24-pentacetoxy-22alpha-carbometoxy-21beta,22beta-epoxy-18beta-hydroxy-27,30-bisnor-3,4-secofriedela-1,20 (29)-dien-3,4 R-olide (LLD-3 (1)) isolated from Lophanthera lactescens Ducke, a member of the Malpighiaceae, was demonstrated against intramacrophage amastigote forms (IC(50) of 0.41mug/mL). The in vitro leishmanicidal effect of Glucantime, the first choice drug for leishmaniasis treatment, was increased by LLD-3 (1) association. The leishmanicidal effect of LLD-3 (1) was not due to stimulation of nitric oxide production by macrophages. LLD-3 (1) was also not cytotoxic for mouse peritoneal macrophages or B cells as assessed by the XTT and Trypan blue exclusion assays. LLD-3 (1) was unable to affect proliferation of naïve or activated B and T cells, as well as the B cells immunoglobulin synthesis. Cellularity of different tissues, liver and kidney functions were not altered in mice treated with LLD-3 (1), as well as the histology pattern of different organs. Our results add LLD-3 (1) as a potential drug candidate for treatment of leishmaniasis.
Parasitology International | 2016
Tahira Souza Melo; Cerli Rocha Gattass; Deivid Costa Soares; Micael R. Cunha; Christian Ferreira; Maurício Temotheo Tavares; Elvira M. Saraiva; Roberto Parise-Filho; Hannah Braden; Jan Carlo Delorenzi
Although a worldwide health problem, leishmaniasis is considered a highly neglected disease, lacking efficient and low toxic treatment. The efforts for new drug development are based on alternatives such as new uses for well-known drugs, in silico and synthetic studies and naturally derived compounds. Oleanolic acid (OA) is a pentacyclic triterpenoid widely distributed throughout the Plantae kingdom that displays several pharmacological activities. OA showed potent leishmancidal effects in different Leishmania species, both against promastigotes (IC(50 L. braziliensis) 30.47 ± 6.35 μM; IC(50 L. amazonensis) 40.46 ± 14.21 μM; IC(50 L. infantum) 65.93 ± 15.12 μM) and amastigotes (IC(50 L. braziliensis) 68.75 ± 16.55 μM; IC(50 L. amazonensis) 38.45 ± 12.05 μM; IC(50 L. infantum) 64.08 ± 23.52 μM), with low cytotoxicity against mouse peritoneal macrophages (CC(50) 235.80 ± 36.95 μM). Moreover, in silico studies performed to evaluate OA molecular properties and to elucidate the possible mechanism of action over the Leishmania enzyme sterol 14α-demethylase (CYP51) suggested that OA interacts efficiently with CYP51 and could inhibit the ergosterol synthesis pathway. Collectively, these data indicate that OA is a good candidate as leading compound for the development of a new leishmaniasis treatment.
PLOS ONE | 2015
Carlos Passos; Christian Ferreira; Deivid Costa Soares; Elvira M. Saraiva
Background Stilbene-based compounds show antitumoral, antioxidant, antihistaminic, anti-inflammatory and antimicrobial activities. Here, we evaluated the effect of the trans-resveratrol analogs, pterostilbene, piceatannol, polydatin and oxyresveratrol, against Leishmania amazonensis. Methodology/Principal Findings Our results demonstrated a low murine macrophage cytotoxicity of all four analogs. Moreover, pterostilbene, piceatannol, polydatin and oxyresveratrol showed an anti-L. amazonensis activity with IC50 values of 18 μM, 65 μM, 95 μM and 65 μM for promastigotes, respectively. For intracellular amastigotes, the IC50 values of the analogs were 33.2 μM, 45 μM, 29 μM and 30.5 μM, respectively. Among the analogs assayed only piceatannol altered the cell cycle of the parasite, increasing 5-fold the cells in the Sub-G0 phase and decreasing 1.7-fold the cells in the G0-G1 phase. Piceatannol also changed the parasite mitochondrial membrane potential (ΔΨm) and increased the number of annexin-V positive promastigotes, which suggests incidental death. Conclusion/Significance Among the analogs tested, piceatannol, which is a metabolite of resveratrol, was the more promising candidate for future studies regarding treatment of leishmaniasis.