Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dela Golshayan is active.

Publication


Featured researches published by Dela Golshayan.


Journal of Immunology | 2004

A Novel Pathway of Alloantigen Presentation by Dendritic Cells

Osquel Barroso Herrera; Dela Golshayan; Rebecca Tibbott; Francisco Salcido Ochoa; Martha J. James; Federica M. Marelli-Berg; Robert I. Lechler

In the context of transplantation, dendritic cells (DCs) can sensitize alloreactive T cells via two pathways. The direct pathway is initiated by donor DCs presenting intact donor MHC molecules. The indirect pathway results from recipient DCs processing and presenting donor MHC as peptide. This simple dichotomy suggests that T cells with direct and indirect allospecificity cannot cross-regulate each other because distinct APCs are involved. In this study we describe a third, semidirect pathway of MHC alloantigen presentation by DCs that challenges this conclusion. Mouse DCs, when cocultured with allogeneic DCs or endothelial cells, acquired substantial levels of class I and class II MHC:peptide complexes in a temperature- and energy-dependent manner. Most importantly, DCs acquired allogeneic MHC in vivo upon migration to regional lymph nodes. The acquired MHC molecules were detected by Ab staining and induced proliferation of Ag-specific T cells in vitro. These data suggest that recipient DCs, due to acquisition of donor MHC molecules, may link T cells with direct and indirect allospecificity.


American Journal of Transplantation | 2010

Treg‐Therapy Allows Mixed Chimerism and Transplantation Tolerance Without Cytoreductive Conditioning

Nina Pilat; Ulrike Baranyi; Christoph Klaus; Elmar Jaeckel; N Mpofu; Fritz Wrba; Dela Golshayan; Ferdinand Muehlbacher; Thomas Wekerle

Establishment of mixed chimerism through transplantation of allogeneic donor bone marrow (BM) into sufficiently conditioned recipients is an effective experimental approach for the induction of transplantation tolerance. Clinical translation, however, is impeded by the lack of feasible protocols devoid of cytoreductive conditioning (i.e. irradiation and cytotoxic drugs/mAbs). The therapeutic application of regulatory T cells (Tregs) prolongs allograft survival in experimental models, but appears insufficient to induce robust tolerance on its own. We thus investigated whether mixed chimerism and tolerance could be realized without the need for cytoreductive treatment by combining Treg therapy with BM transplantation (BMT). Polyclonal recipient Tregs were cotransplanted with a moderate dose of fully mismatched allogeneic donor BM into recipients conditioned solely with short‐course costimulation blockade and rapamycin. This combination treatment led to long‐term multilineage chimerism and donor‐specific skin graft tolerance. Chimeras also developed humoral and in vitro tolerance. Both deletional and nondeletional mechanisms contributed to maintenance of tolerance. All tested populations of polyclonal Tregs (FoxP3‐transduced Tregs, natural Tregs and TGF‐β induced Tregs) were effective in this setting. Thus, Treg therapy achieves mixed chimerism and tolerance without cytoreductive recipient treatment, thereby eliminating a major toxic element impeding clinical translation of this approach.


Transplantation | 2006

A novel pathway of antigen presentation by dendritic and endothelial cells: Implications for allorecognition and infectious diseases

Lesley A. Smyth; Osquel Barroso Herrera; Dela Golshayan; Giovanna Lombardi; Robert I. Lechler

Dendritic cells (DCs) are the major antigen presenting cells capable of stimulating T cell responses following either organ transplantation or a viral infection. In the context of allorecognition, T cells can be activated following presentation of alloantigens by donor DCs (direct), as well as by recipient DCs presenting processed donor major histocompatibility complex (MHC) as peptides (indirect). We have recently described another mechanism by which alloreactive T cells are activated. Recipient DCs can acquire donor MHC through cell-to-cell contact and this acquired MHC can stimulate a T cell response (the semidirect pathway). Similarly, during a viral infection, DCs are capable of stimulating T cells directly, as occurs when infected DCs present processed viral antigens, or indirectly by a process known as cross-presentation. Although cross-presentation of exogenous antigen is an important mechanism for controlling infectious diseases, it is possible that peptide:MHC acquisition (the semidirect pathway) may also play a part in immunity against pathogens. In this review, we discuss the possible contributions of the semidirect pathway/MHC transfer in infectious disease.


Journal of Clinical Investigation | 2011

Myeloid-derived suppressor cells are implicated in regulating permissiveness for tumor metastasis during mouse gestation

Laetitia A. Mauti; Marie-Aude Le Bitoux; Karine Baumer; Jean-Christophe Stehle; Dela Golshayan; Paolo Provero; Ivan Stamenkovic

Metastasis depends on the ability of tumor cells to establish a relationship with the newly seeded tissue that is conducive to their survival and proliferation. However, the factors that render tissues permissive for metastatic tumor growth have yet to be fully elucidated. Breast tumors arising during pregnancy display early metastatic proclivity, raising the possibility that pregnancy may constitute a physiological condition of permissiveness for tumor dissemination. Here we have shown that during murine gestation, metastasis is enhanced regardless of tumor type, and that decreased NK cell activity is responsible for the observed increase in experimental metastasis. Gene expression changes in pregnant mouse lung and liver were shown to be similar to those detected in premetastatic sites and indicative of myeloid cell infiltration. Indeed, myeloid-derived suppressor cells (MDSCs) accumulated in pregnant mice and exerted an inhibitory effect on NK cell activity, providing a candidate mechanism for the enhanced metastatic tumor growth observed in gestant mice. Although the functions of MDSCs are not yet understood in the context of pregnancy, our observations suggest that they may represent a shared mechanism of immune suppression occurring during gestation and tumor growth.


Transplant International | 2007

From current immunosuppressive strategies to clinical tolerance of allografts.

Dela Golshayan; Leo H. Buhler; Robert I. Lechler; Manuel Pascual

In order to prevent allograft rejection, most current immunosuppressive drugs nonspecifically target T‐cell activation, clonal expansion or differentiation into effector cells. Experimental models have shown that it is possible to exploit the central and peripheral mechanisms that normally maintain immune homeostasis and tolerance to self‐antigens, in order to induce tolerance to alloantigens. Central tolerance results from intrathymic deletion of T cells with high avidity for thymically expressed antigens. Peripheral tolerance to nonself‐molecules can be achieved by various mechanisms including deletion of activated/effector T cells, anergy induction and active regulation of effector T cells. In this article, we briefly discuss the pathways of allorecognition and their relevance to current immunosuppressive strategies and to the induction of transplantation tolerance (through haematopoietic mixed chimerism, depleting protocols, costimulatory blockade and regulatory T cells). We then review the prospect of clinical applicability of these protocols in solid organ transplantation.


The EMBO Journal | 2014

Malt1 protease inactivation efficiently dampens immune responses but causes spontaneous autoimmunity

Maike Jaworski; Ben J Marsland; Jasmine Gehrig; Werner Held; Stéphanie Favre; Sanjiv A. Luther; Dela Golshayan; Olivier Gaide; Margot Thome

The protease activity of the paracaspase Malt1 has recently gained interest as a drug target for immunomodulation and the treatment of diffuse large B‐cell lymphomas. To address the consequences of Malt1 protease inactivation on the immune response in vivo, we generated knock‐in mice expressing a catalytically inactive C472A mutant of Malt1 that conserves its scaffold function. Like Malt1‐deficient mice, knock‐in mice had strong defects in the activation of lymphocytes, NK and dendritic cells, and the development of B1 and marginal zone B cells and were completely protected against the induction of autoimmune encephalomyelitis. Malt1 inactivation also protected the mice from experimental induction of colitis. However, Malt1 knock‐in mice but not Malt1‐deficient mice spontaneously developed signs of autoimmune gastritis that correlated with an absence of Treg cells, an accumulation of T cells with an activated phenotype and high serum levels of IgE and IgG1. Thus, removal of the enzymatic activity of Malt1 efficiently dampens the immune response, but favors autoimmunity through impaired Treg development, which could be relevant for therapeutic Malt1‐targeting strategies.


European Heart Journal | 2010

Evidence for a role of sphingosine-1 phosphate in cardiovascular remodelling in Fabry disease

Noureddine Brakch; Olivier Dormond; Soumeya Bekri; Dela Golshayan; Magali Correvon; Lucia Mazzolai; Beat Steinmann; Frédéric Barbey

AIMS A hallmark of Fabry disease is the concomitant development of left-ventricular hypertrophy and arterial intima-media thickening, the pathogenesis of which is thought to be related to the presence of a plasmatic circulating growth-promoting factor. We therefore characterized the plasma of patients with Fabry disease in order to identify this factor. METHODS AND RESULTS Using a classical biochemical strategy, we isolated and identified sphingosine-1 phosphate (S1P) as a proliferative factor present in the plasma of patients with Fabry disease. Plasma S1P levels were significantly higher in 17 patients with Fabry disease compared with 17 healthy controls (225 +/- 40 vs. 164 +/- 17 ng/mL; P = 0.005). There was a positive correlation between plasma S1P levels and both common carotid artery intima-media thickness and left-ventricular mass index (r(2) = 0.47; P = 0.006 and r(2) = 0.53; P = 0.0007, respectively). In an experimental model, mice treated with S1P developed cardiovascular remodelling similar to that observed in patients with Fabry disease. CONCLUSION Sphingosine-1 phosphate participates in cardiovascular remodelling in Fabry disease. Our findings have implications for the treatment of cardiovascular involvement in Fabry disease.


Drugs | 2008

Tolerance-inducing immunosuppressive strategies in clinical transplantation: an overview.

Dela Golshayan; Manuel Pascual

The significant development of immunosuppressive drug therapies within the past 20 years has had a major impact on the outcome of clinical solid organ transplantation, mainly by decreasing the incidence of acute rejection episodes and improving short-term patient and graft survival. However, long-term results remain relatively disappointing because of chronic allograft dysfunction and patient morbidity or mortality, which is often related to the adverse effects of immunosuppressive treatment. Thus, the induction of specific immunological tolerance of the recipient towards the allograft remains an important objective in transplantation. In this article, we first briefly describe the mechanisms of allograft rejection and immune tolerance. We then review in detail current tolerogenic strategies that could promote central or peripheral tolerance, highlighting the promises as well as the remaining challenges in clinical transplantation. The induction of haematopoietic mixed chimerism could be an approach to induce robust central tolerance, and we describe recent encouraging reports of end-stage kidney disease patients, without concomitant malignancy, who have undergone combined bone marrow and kidney transplantation. We discuss current studies suggesting that, while promoting peripheral transplantation tolerance in preclinical models, induction protocols based on lymphocyte depletion (polyclonal antithymocyte globulins, alemtuzumab) or co-stimulatory blockade (belatacept) should, at the current stage, be considered more as drug-minimization rather than tolerance-inducing strategies. Thus, a better understanding of the mechanisms that promote peripheral tolerance has led to newer approaches and the investigation of individualized donor-specific cellular therapies based on manipulated recipient regulatory T cells.


Diabetes | 2011

Immunosuppressive effects of streptozotocin-induced diabetes result in absolute lymphopenia and a relative increase of T regulatory cells

Yannick D. Muller; Dela Golshayan; Driss Ehirchiou; Jean Christophe Wyss; Laurianne Giovannoni; Raphael Meier; Véronique Serre-Beinier; Gisella Puga Yung; Philippe Morel; Leo H. Buhler; Jorg Dieter Seebach

OBJECTIVE Streptozotocin (STZ) is the most widely used diabetogenic agent in animal models of islet transplantation. However, the immunomodifying effects of STZ and the ensuing hyperglycemia on lymphocyte subsets, particularly on T regulatory cells (Tregs), remain poorly understood. RESEARCH DESIGN AND METHODS This study evaluated how STZ-induced diabetes affects adaptive immunity and the consequences thereof on allograft rejection in murine models of islet and skin transplantation. The respective toxicity of STZ and hyperglycemia on lymphocyte subsets was tested in vitro. The effect of hyperglycemia was assessed independently of STZ in vivo by the removal of transplanted syngeneic islets, using an insulin pump, and with rat insulin promoter diphtheria toxin receptor transgenic mice. RESULTS Early lymphopenia in both blood and spleen was demonstrated after STZ administration. Direct toxicity of STZ on lymphocytes, particularly on CD8+ cells and B cells, was shown in vitro. Hyperglycemia also correlated with blood and spleen lymphopenia in vivo but was not lymphotoxic in vitro. Independently of hyperglycemia, STZ led to a relative increase of Tregs in vivo, with the latter retaining their suppressive capacity in vitro. The higher frequency of Tregs was associated with Treg proliferation in the blood, but not in the spleen, and higher blood levels of transforming growth factor-β. Finally, STZ administration delayed islet and skin allograft rejection compared with naive mice. CONCLUSIONS These data highlight the direct and indirect immunosuppressive effects of STZ and acute hyperglycemia, respectively. Thus, these results have important implications for the future development of tolerance-based protocols and their translation from the laboratory to the clinic.


PLOS ONE | 2010

Anti-CD154 mAb and Rapamycin Induce T Regulatory Cell Mediated Tolerance in Rat-to-Mouse Islet Transplantation

Yannick D. Muller; Gang Mai; Philippe Morel; Véronique Serre-Beinier; Carmen Gonelle-Gispert; Gisella Puga Yung; Driss Ehirchiou; Jean-Christophe Wyss; Sinda Bigenzahn; Magali Irla; Christoph Heusser; Dela Golshayan; Jorg Dieter Seebach; Thomas Wekerle; Leo H. Buhler

Background Anti-CD154 (MR1) monoclonal antibody (mAb) and rapamycin (RAPA) treatment both improve survival of rat-to-mouse islet xenograft. The present study investigated the effect of combined RAPA/MR1 treatment on rat-to-mouse islet xenograft survival and analyzed the role of CD4+CD25+Foxp3+ T regulatory cells (Treg) in the induction and maintenance of the ensuing tolerance. Methodology/Principal Findings C57BL/6 mice were treated with MR1/RAPA and received additional monoclonal anti-IL2 mAb or anti CD25 mAb either early (0–28 d) or late (100–128 d) post-transplantation. Treg were characterised in the blood, spleen, draining lymph nodes and within the graft of tolerant and rejecting mice by flow cytometry and immunohistochemistry. Fourteen days of RAPA/MR1 combination therapy allowed indefinite islet graft survival in >80% of the mice. Additional administration of anti-IL-2 mAb or depleting anti-CD25 mAb at the time of transplantation resulted in rejection (100% and 89% respectively), whereas administration at 100 days post transplantation lead to lower rejection rates (25% and 40% respectively). Tolerant mice showed an increase of Treg within the graft and in draining lymph nodes early post transplantation, whereas 100 days post transplantation no significant increase of Treg was observed. Rejecting mice showed a transient increase of Treg in the xenograft and secondary lymphoid organs, which disappeared within 7 days after rejection. Conclusions/Significances These results suggest a critical role for Treg in the induction phase of tolerance early after islet xenotransplantation. These encouraging data support the need of developing further Treg therapy for overcoming the species barrier in xenotransplantation.

Collaboration


Dive into the Dela Golshayan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isabelle Binet

Kantonsspital St. Gallen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michel Burnier

University Hospital of Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge