Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Delia Susan-Resiga is active.

Publication


Featured researches published by Delia Susan-Resiga.


Journal of Biological Chemistry | 2011

In Vivo Evidence That Furin from Hepatocytes Inactivates PCSK9

Rachid Essalmani; Delia Susan-Resiga; Ann Chamberland; Marianne Abifadel; John Creemers; Catherine Boileau; Nabil G. Seidah; Annik Prat

The proprotein convertase PCSK9 plays a key role in cholesterol homeostasis by binding the LDL receptor and targeting it toward degradation. PCSK9 is strongly expressed in the liver and is found in human and mouse plasma as mature (∼62 kDa) and inactivated (∼55 kDa) forms. Ex vivo data showed that human PCSK9 is inactivated by cleavage at Arg218↓ by the overexpressed convertases furin and PC5/6A. Analysis of the plasma of human heterozygotes for R218S and F216L mutations revealed a ∼50% reduction in the levels of the ∼55-kDa form. To identify the convertase(s) responsible for cleavage at Arg218 in vivo, we inactivated the genes of furin and/or PC5/6 specifically in hepatocytes. The PCSK9-inactivated form was strongly reduced in mice lacking furin in hepatocytes (Fur-hKO) and only slightly reduced in PC5/6-hKO plasma. In agreement with a key role of furin in regulating PCSK9 activity in vivo, we observed an overall 26% drop in the LDL receptor protein levels of Fur-hKO livers, likely due to the compound effects of a 35% increase in PCSK9 mRNA levels and the loss of PCSK9 cleavage, suggesting a higher activity of PCSK9 in these mice. Overexpression of PCSK9 in primary hepatocytes obtained from these mice revealed that only full-length, membrane-bound, but not soluble, furin is the cognate convertase. We conclude that in hepatocytes furin regulates PCSK9 mRNA levels and is the key in vivo-inactivating protease of circulating PCSK9.


Journal of Biological Chemistry | 2011

Furin Is the Major Processing Enzyme of the Cardiac-specific Growth Factor Bone Morphogenetic Protein 10

Delia Susan-Resiga; Rachid Essalmani; Josée Hamelin; Marie-Claude Asselin; Suzanne Benjannet; Ann Chamberland; Robert Day; Dorota Szumska; Daniel B. Constam; Shoumo Bhattacharya; Annik Prat; Nabil G. Seidah

Bone morphogenetic protein 10 (BMP10) is a member of the TGF-β superfamily and plays a critical role in heart development. In the postnatal heart, BMP10 is restricted to the right atrium. The inactive pro-BMP10 (∼60 kDa) is processed into active BMP10 (∼14 kDa) by an unknown protease. Proteolytic cleavage occurs at the RIRR316↓ site (human), suggesting the involvement of proprotein convertase(s) (PCs). In vitro digestion of a 12-mer peptide encompassing the predicted cleavage site with furin, PACE4, PC5/6, and PC7, showed that furin cleaves the best, whereas PC7 is inactive on this peptide. Ex vivo studies in COS-1 cells, a cell line lacking PC5/6, revealed efficient processing of pro-BMP10 by endogenous PCs other than PC5/6. The lack of processing of overexpressed pro-BMP10 in the furin- and PACE4-deficient cell line, CHO-FD11, and in furin-deficient LoVo cells, was restored by stable (CHO-FD11/Fur cells) or transient (LoVo cells) expression of furin. Use of cell-permeable and cell surface inhibitors suggested that endogenous PCs process pro-BMP10 mostly intracellularly, but also at the cell surface. Ex vivo experiments in mouse primary hepatocytes (wild type, PC5/6 knock-out, and furin knock-out) corroborated the above findings that pro-BMP10 is a substrate for endogenous furin. Western blot analyses of heart right atria extracts from wild type and PACE4 knock-out adult mice showed no significant difference in the processing of pro-BMP10, implying no in vivo role of PACE4. Overall, our in vitro, ex vivo, and in vivo data suggest that furin is the major convertase responsible for the generation of BMP10.


PLOS ONE | 2013

Modulation of protease activated receptor 1 influences human metapneumovirus disease severity in a mouse model.

Laetitia Aerts; Marie-Ève Hamelin; Chantal Rhéaume; Sophie Lavigne; Christian Couture; Woojin W Kim; Delia Susan-Resiga; Annik Prat; Nabil G. Seidah; Nathalie Vergnolle; Béatrice Riteau; Guy Boivin

Human metapneumovirus (hMPV) infection causes acute respiratory tract infections (RTI) which can result in hospitalization of both children and adults. To date, no antiviral or vaccine is available for this common viral infection. Immunomodulators could represent an interesting strategy for the treatment of severe viral infection. Recently, the role of protease-activated receptors (PAR) in inflammation, coagulation and infection processes has been of growing interest. Herein, the effects of a PAR1 agonist and a PAR1 antagonist on hMPV infection were investigated in BALB/c mice. Intranasal administration of the PAR1 agonist resulted in increased weight loss and mortality of infected mice. Conversely, the PAR1 antagonist was beneficial to hMPV infection by decreasing weight loss and clinical signs and by significantly reducing pulmonary inflammation, pro-inflammatory cytokine levels (including IL-6, KC and MCP-1) and recruitment of immune cells to the lungs. In addition, a significant reduction in pulmonary viral titers was also observed in the lungs of PAR1 antagonist-treated mice. Despite no apparent direct effect on virus replication during in vitro experiments, an important role for PAR1 in the regulation of furin expression in the lungs was shown for the first time. Further experiments indicated that the hMPV fusion protein can be cleaved by furin thus suggesting that PAR1 could have an effect on viral infectivity in addition to its immunomodulatory properties. Thus, inhibition of PAR1 by selected antagonists could represent an interesting strategy for decreasing the severity of paramyxovirus infections.


Journal of Biological Chemistry | 2013

Furin is the primary in vivo convertase of angiopoietin-like 3 and endothelial lipase in hepatocytes

Rachid Essalmani; Delia Susan-Resiga; Ann Chamberland; Marie-Claude Asselin; Maryssa Canuel; Daniel B. Constam; John Creemers; Robert Day; Dany Gauthier; Annik Prat; Nabil G. Seidah

Background: Proprotein convertases (PCs) activate overexpressed endothelial lipase (EL) inhibitor angiopoietin-like-3 (ANGPTL3) and inactivate EL. Results: In PC knock-out-mice, analysis of primary hepatocytes and circulating ANGPTL3 and EL fragments revealed that furin is their primary convertase. Conclusion: However, the lack of hepatocyte furin had no major impact on HDL-cholesterol or EL phospholipase activity. Significance: Inhibition/silencing of furin in hepatocytes would not affect lipid profiles. The proprotein convertases (PCs) furin, PC5/6, and PACE4 exhibit unique and/or complementary functions. Their knock-out (KO) in mice resulted in strong and specific phenotypes demonstrating that, in vivo, these PCs are unique and essential during development. However, they also exhibit redundant functions. Liver angiopoietin-like 3 (ANGPTL3) inhibits lipolysis by binding to lipoprotein lipases. It is found in the plasma as full length and truncated forms. The latter is more active and generated by cleavage at a furin-like site. Endothelial lipase (EL) binds heparin sulfate proteoglycans on cell surfaces and catalyzes the hydrolysis of HDL phospholipids. EL activity is regulated by two endogenous inhibitors, ANGPTL3 and ANGPTL4, and by PCs that inactivate EL through cleavage releasing the N-terminal catalytic and C-terminal lipid-binding domains. Herein, because furin and PC5/6 complete KOs are lethal, we used mice lacking furin or PC5/6 specifically in hepatocytes (hKO) or mice completely lacking PACE4. In primary hepatocytes, ANGPTL3 was processed into a shorter form of ANGPTL3 intracellularly by furin only, and extracellularly mainly by PACE4. In vivo, the absence of furin in hepatocytes reduced by ∼50% the circulating levels of cleaved ANGPTL3, while the lack of PACE4 had only a minor effect. Analysis of the EL processing in primary hepatocytes and in vivo revealed that it is mostly cleaved by furin. However, the lack of furin or PC5/6 in hepatocytes and complete PACE4 KO did not appreciably modify plasma HDL levels or EL activity. Thus, inhibition of furin in liver would not be expected to modify the plasma lipid profiles.


Journal of Biological Chemistry | 2011

Latent Transforming Growth Factor β-Binding Proteins-2 and -3 Inhibit the Proprotein Convertase 5/6A

Xiaowei Sun; Rachid Essalmani; Delia Susan-Resiga; Annik Prat; Nabil G. Seidah

The basic amino acid-specific proprotein convertase 5/6 (PC5/6) is an essential secretory protease, as knock-out mice die at birth and exhibit multiple homeotic transformation defects, including impaired bone morphogenesis and lung structure. Some of the observed defects were attributed to impaired processing of the TGFβ-like growth differentiating factor 11 precursor (proGdf11). In this work we present evidence that the latent TGFβ-binding proteins 2 and 3 (LTBP-2 and -3) inhibit the extracellular processing of proGdf11 by PC5/6A. This is partly due to the binding of LTBPs in the endoplasmic reticulum to the zymogen proPC5/6A, thus allowing the complex to exit the endoplasmic reticulum and be sequestered as an inactive zymogen in the extracellular matrix but not at the cell surface. This results in lower levels of PC5/6A in the media, without affecting those of PACE4, Furin, or a soluble form of PC7. The secreted soluble protease-specific activity of PC5/6A or a variant lacking the C-terminal Cys-rich domain (PC5/6-ΔCRD) is significantly decreased when co-expressed with LTBPs in cells. A similar enzymatic inhibition seems to apply to PACE4 and Furin. In situ hybridization analyses revealed extensive co-localization of PC5/6 and LTBP-3 mRNAs in mice at embryonic day 15.5 and post partum day 1. In conclusion, this is the first time that a zymogen of the proprotein convertases was shown to exit the endoplasmic reticulum in the presence of LTBPs, representing a potential novel mechanism for the regulation of PC5/6A activity, e.g. in tissues such as bone and lung where LTBP-3 and PC5/6 co-localize.


Journal of Biological Chemistry | 2016

Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Single Domain Antibodies Are Potent Inhibitors of Low Density Lipoprotein Receptor Degradation.

Elodie Weider; Delia Susan-Resiga; Rachid Essalmani; Josée Hamelin; Marie-Claude Asselin; Surendra Nimesh; Yahya Ashraf; Keith L. Wycoff; Jianbing Zhang; Annik Prat; Nabil G. Seidah

Single domain antibodies (sdAbs) correspond to the antigen-binding domains of camelid antibodies. They have the same antigen-binding properties and specificity as monoclonal antibodies (mAbs) but are easier and cheaper to produce. We report here the development of sdAbs targeting human PCSK9 (proprotein convertase subtilisin/kexin type 9) as an alternative to anti-PCSK9 mAbs. After immunizing a llama with human PCSK9, we selected four sdAbs that bind PCSK9 with a high affinity and produced them as fusion proteins with a mouse Fc. All four sdAb-Fcs recognize the C-terminal Cys-His-rich domain of PCSK9. We performed multiple cellular assays and demonstrated that the selected sdAbs efficiently blocked PCSK9-mediated low density lipoprotein receptor (LDLR) degradation in cell lines, in human hepatocytes, and in mouse primary hepatocytes. We further showed that the sdAb-Fcs do not affect binding of PCSK9 to the LDLR but rather block its induced cellular LDLR degradation. Pcsk9 knock-out mice expressing a human bacterial artificial chromosome (BAC) transgene were generated, resulting in plasma levels of ∼300 ng/ml human PCSK9. Mice were singly or doubly injected with the best sdAb-Fc and analyzed at day 4 or 11, respectively. After 4 days, mice exhibited a 32 and 44% decrease in the levels of total cholesterol and apolipoprotein B and ∼1.8-fold higher liver LDLR protein levels. At 11 days, the equivalent values were 24 and 46% and ∼2.3-fold higher LDLR proteins. These data constitute a proof-of-principle for the future usage of sdAbs as PCSK9-targeting drugs that can efficiently reduce LDL-cholesterol, and as tools to study the Cys-His-rich domain-dependent sorting the PCSK9-LDLR complex to lysosomes.


Molecular and Cellular Biology | 2015

Neuroinflammation-induced interactions between protease-activated receptor 1 and proprotein convertases in HIV-associated neurocognitive disorder

WooJin Kim; Erin Zekas; Robert Lodge; Delia Susan-Resiga; Edwidge Marcinkiewicz; Rachid Essalmani; Koichiro Mihara; Eugene L. Asahchop; Benjamin B. Gelman; Éric A. Cohen; Christopher Power; Morley D. Hollenberg; Nabil G. Seidah

ABSTRACT The proprotein convertases (PCs) furin, PC5, PACE4, and PC7 cleave secretory proteins after basic residues, including the HIV envelope glycoprotein (gp160) and Vpr. We evaluated the abundance of PC mRNAs in postmortem brains of individuals exhibiting HIV-associated neurocognitive disorder (HAND), likely driven by neuroinflammation and neurotoxic HIV proteins (e.g., envelope and Vpr). Concomitant with increased inflammation-related gene expression (interleukin-1β [IL-1β]), the mRNA levels of the above PCs are significantly increased, together with those of the proteinase-activated receptor 1 (PAR1), an inflammation-associated receptor that is cleaved by thrombin at ProArg41↓ (where the down arrow indicates the cleavage location), and potentially by PCs at Arg41XXXXArg46↓. The latter motif in PAR1, but not its R46A mutant, drives its interactions with PCs. Indeed, PAR1 upregulation leads to the inhibition of membrane-bound furin, PC5B, and PC7 and inhibits gp160 processing and HIV infectivity. Additionally, a proximity ligation assay revealed that furin and PC7 interact with PAR1. Reciprocally, increased furin expression reduces the plasma membrane abundance of PAR1 by trapping it in the trans-Golgi network. Furthermore, soluble PC5A/PACE4 can target/disarm cell surface PAR1 through cleavage at Arg46↓. PACE4/PC5A decreased calcium mobilization induced by thrombin stimulation. Our data reveal a new PC-PAR1-interaction pathway, which offsets the effects of HIV-induced neuroinflammation, viral infection, and potentially the development of HAND.


Journal of Clinical Investigation | 2017

Proprotein convertase furin regulates osteocalcin and bone endocrine function

Omar El-Rifai; Jacqueline Chow; Julie Lacombe; Catherine Julien; Denis Faubert; Delia Susan-Resiga; Rachid Essalmani; John Creemers; Nabil G. Seidah; Mathieu Ferron

Osteocalcin (OCN) is an osteoblast-derived hormone that increases energy expenditure, insulin sensitivity, insulin secretion, and glucose tolerance. The cDNA sequence of OCN predicts that, like many other peptide hormones, OCN is first synthesized as a prohormone (pro-OCN). The importance of pro-OCN maturation in regulating OCN and the identity of the endopeptidase responsible for pro-OCN cleavage in osteoblasts are still unknown. Here, we show that the proprotein convertase furin is responsible for pro-OCN maturation in vitro and in vivo. Using pharmacological and genetic experiments, we also determined that furin-mediated pro-OCN cleavage occurred independently of its &ggr;-carboxylation, a posttranslational modification that is known to hamper OCN endocrine action. However, because pro-OCN is not efficiently decarboxylated and activated during bone resorption, inactivation of furin in osteoblasts in mice resulted in decreased circulating levels of undercarboxylated OCN, impaired glucose tolerance, and reduced energy expenditure. Furthermore, we show that Furin deletion in osteoblasts reduced appetite, a function not modulated by OCN, thus suggesting that osteoblasts may secrete additional hormones that regulate different aspects of energy metabolism. Accordingly, the metabolic defects of the mice lacking furin in osteoblasts became more apparent under pair-feeding conditions. These findings identify furin as an important regulator of bone endocrine function.


Molecular Nutrition & Food Research | 2016

Deferoxamine stimulates LDLR expression and LDL uptake in HepG2 cells.

Johann Guillemot; Marie-Claude Asselin; Delia Susan-Resiga; Rachid Essalmani; Nabil G. Seidah

SCOPE Iron overload contributes to the pathogenesis of atherosclerosis and iron chelators are beneficial through their antioxidant properties. Hepatic iron loading increases cholesterol synthesis. Whether iron depletion could affect hepatic cholesterol metabolism is unknown. METHODS AND RESULTS We examined the effect of the iron chelator deferoxamine (DFO) on mRNA expression of genes involved in cholesterol metabolism and/or cholesterol uptake. Our results revealed that DFO increases LDL receptor (LDLR) mRNA levels in human hepatocyte-derived cell lines HepG2 and Huh7 cells, and in K562 cells. In HepG2 cells, we observed that DFO increases (i) LDLR-mRNA levels in a time- and dose-dependent manner, (ii) LDLR-protein levels; (iii) cell surface LDLR; and (iv) LDL uptake. In contrast, the mRNA levels of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, sterol regulatory element-binding proteins, and the mRNA/protein levels of proprotein convertase subtilisin-kexin 9 were not modulated by DFO, suggesting that the LDLR regulation by DFO is not at the transcriptional or posttranslational levels. Since LDLR-mRNA was stabilized by DFO, a posttranscriptional mechanism is suggested for the DFO-mediated upregulation of LDLR. CONCLUSION DFO induced an increase in LDLR expression by a posttranscriptional mechanism resulting in an enhancement of LDL uptake in HepG2 cells, suggesting increased LDLR activity as one of the underlying causes of the hypocholesterolemic effect of iron reduction.


Journal of Biological Chemistry | 2003

Monitoring active site alterations upon mutation of yeast pyruvate kinase using 205Tl+ NMR.

Delia Susan-Resiga; Thomas Nowak

The interaction of the monovalent cation with wild type (WT) yeast pyruvate kinase (YPK) and with the T298S, T298C, and T298A mutants was investigated by 205Tl+ NMR to monitor possible structural alterations at the active site by Thr-298 mutation. TlNO3 activates WT YPK with a kcat value similar to that obtained with KCl and an apparent Ka of 0.96 ± 0.07 mm in the presence of Mn2+ and fructose 1,6-bisphosphate. With the three mutants, Tl+ is a better activator than is K+ based on kcat values. Tl+ activation and inhibition of YPK is affected by mutation of the active site Thr-298. The effect of Mn2+ on the 1/T value of 205Tl+1 in the presence of the WT and mutant YPK complexes was determined at 173 MHz (300 MHz, 1H) and 346 MHz (600 MHz, 1H). For each complex studied, 1/pT2p ≫ 1/pT1p and 1/pT1p is frequency-dependent suggesting fast exchange conditions. The values of 1/pT1p differ for each mutant. A correlation time of 0.65 ± 0.35 ns was estimated for the Mn2+-205Tl+ interaction. The Tl+-Mn2+ distances at the active site of YPK were calculated from the paramagnetic contribution of Mn2+ to 1/T1M of YPK-bound 205Tl+. The calculated Tl+-Mn2+ distance for the Thr-298 mutants is decreased by about 1 Å from 6.0 ± 0.2 Å observed with WT. The results suggest conformational alterations at the active site of YPK where phosphoryl transfer occurs upon mutation of Thr-298. These conformational changes may, in part, explain the alteration in kcat and kcat/Km,PEP observed with the Thr-298 mutants.

Collaboration


Dive into the Delia Susan-Resiga's collaboration.

Top Co-Authors

Avatar

Nabil G. Seidah

King Abdulaziz University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annik Prat

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josée Hamelin

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

John Creemers

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Nowak

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge