Delia Takara
University of Buenos Aires
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Delia Takara.
Biochimica et Biophysica Acta | 1996
Delia Takara; Guillermo L. Alonso
Several effects of the neuroleptic agent haloperidol on the sarcoplasmic reticulum (SR) Ca-dependent adenosine triphosphatase (Ca-ATPase) and Ca transport are described. Haloperidol inhibits the Ca-ATPase activity in the presence of calcimycin. The effect depends on the conditions of preexposure of the membranes to the drug: the inhibition increases with the preincubation time; Ca and Mg protect the enzyme against the effect of the drug. The inhibitory effect of haloperidol decreases upon increasing [Ca2+], at constant [Mg], and disappears at 20 mM [Mg] for any [Ca2+], and at 0.5 mM [Ca2+] for any [Mg2+]. Haloperidol also inhibits phosphorylation of the enzyme by Pi, and ATP-dependent Ca2+ uptake, in both cases with apparent Ki = 0.10-0.15 mM, and increases the rate of Ca efflux from preloaded vesicles in this concentration range. The results suggest that haloperidol interacts with the catalytic site, interfering with the effect of the divalent catalytic cation, but not at other steps of the enzymatic cycle, where Mg2+ and Ca2+ are also activators. They are consistent with a reaction model where haloperidol interacts with the E2 conformers of the enzyme, with lower affinity for the phosphoenzyme than for the dephospho species. The inhibition of Ca uptake by SR vesicles is ascribed to an increased Ca2+ permeability rather than to the inhibition of the Ca-ATPase, which requires higher concentrations of the drug.
Journal of Dental Research | 2010
Gabriel A. Sánchez; Delia Takara; Guillermo L. Alonso
Local anesthetics have myotoxic effects and inhibit Ca-ATPase activity and Ca transport in skeletal muscles. Such effects have not been fully elucidated in masticatory muscles. We tested the hypothesis that local anesthetics increase myoplasmic calcium in masticatory muscles by inhibiting Ca-ATPase at a concentration similar to that of dental cartridges. The effects of lidocaine and bupivacaine on Ca-ATPase from rabbit masseter and medial pterygoid muscles were tested with radioisotopic and colorimetric methods. Bupivacaine had an action similar to that of lidocaine on Ca-ATPase activity, but less effect on calcium transport. The pre-exposure of the membranes to the anesthetics enhanced the Ca-ATPase activity in the absence of calcium ionophore, supporting their permeabilizing effect. The results demonstrate that amide-type anesthetics do not inhibit calcium binding, but do reduce calcium transport and enzyme phosphorylation by ATP, and suggest that the myoplasmic calcium increase induced by lidocaine and bupivacaine might promote masticatory muscle contraction and eventual rigidity.
Naunyn-schmiedebergs Archives of Pharmacology | 2005
Delia Takara; Gabriel A. Sánchez; Augusto F. Toma; Patricia Bonazzola; Guillermo L. Alonso
Ca2+-ATPase is a major intrinsic protein in the sarcoplasmic reticulum (SR) from skeletal muscles. It actively transports Ca2+ from the cytoplasm to the SR lumen, reducing cytoplasmic [Ca2+] to promote muscle relaxation. Carticaine is a local anesthetic widely used in operative dentistry. We previously showed that carticaine inhibits SR Ca2+-ATPase activity and the coupled Ca2+ uptake by isolated SR vesicles, and increases the rate of Ca2+ efflux from preloaded vesicles. We also found that these effects were antagonized by divalent cations, and concluded that they were mainly due to the direct interaction of carticaine with the Ca2+-ATPase protein. Here we present additional results on the modulation of the above effects of carticaine by Ca2+ and Mg2+. The activating effect of Ca2+ on the ATPase activity is competitively inhibited by carticaine, indicating a decreased Ca2+ binding to the high affinity Ca2+ transport sites. The activating effect of Mg2+ on the phosphorylation of Ca2+-ATPase by orthophosphate is also inhibited by carticaine. The anesthetic does not affect the reaction mechanism of the cations acting as cofactors of ATP in the catalytic site. On the basis of the present and our previous results, we propose a model that describes the effect of carticaine on the Ca2+-ATPase cycle.
Journal of Dental Research | 2004
Gabriel A. Sánchez; Delia Takara; A.F. Toma; Guillermo L. Alonso
We compared the sarcoplasmic reticulum (SR) Ca-ATPase from masseter (M) and medial pterygoid (MP) muscles with that from fast muscles (FM) to examine whether its calcium transport capability and enzymatic activity are different. SR vesicles from FM, M, and MP muscles were obtained according to Champeil et al.(1985). Assays for characterization of the enzyme properties were performed. The results showed similar optimal conditions for the Ca-ATPase activity and calcium transport in M, MP, and FM. However, the maximal values of calcium transport, Ca-ATPase activity, and Ki for thapsigargin were significantly lower in the masticatory muscles. These findings are likely related to different Ca-ATPase isoforms. Since the local anesthetics used in dentistry inhibit Ca-ATPase and calcium transport in FM, it will be important for the effects of these drugs on the Ca-ATPase of masticatory muscles to be assessed.
Biochimica et Biophysica Acta | 1998
Guillermo L. Alonso; Débora A. González; Delia Takara; Mariano Aníbal Ostuni; Gabriel A. Sánchez
The sarcoplasmic reticulum Ca-ATPase is fully activated when approximately 1 microM [Ca2+] saturates the two transport sites; higher [Ca] inhibits the ATPase by competition of Ca-ATP with Mg-ATP as substrates. Here we describe a novel effect of EGTA and other chelators, raising the possibility of an additional activating effect of Ca in the sub- or low microM range. Sarcoplasmic reticulum membranes were isolated from rabbit skeletal muscles. The ATPase activity was measured after incubation at 37 degreesC in 3 mM ATP, 3 mM MgCl2, 50 mM MOPS-Tris (pH 7.2), 100 mM KCl, and variable CaCl2, EGTA and calcimycin. In the absence of added EGTA and Ca the ATPase activity is high due to contaminant Ca. The determination of the ATPase activity in the presence of increasing amounts of EGTA, without added Ca, yields a decreasing sigmoidal function. Ki ranged between 20 and 100 microM, depending on the enzyme concentration. Pi production is linear with time for several [EGTA] yielding suboptimal ATPase activities, which are inhibited by thapsigargin. These suboptimal Ca-ATPase activities are inhibited by preincubation of the enzyme in EGTA, at pH 7.2. This effect increases upon increasing EGTA concentration and preincubation time. The inhibitory effect of the previous exposure of the enzyme to EGTA is partially but significantly reverted by increasing [Ca2+] during incubations. Calcimycin and EDTA have similar effects as EGTA when added in preincubations. The effect of calcimycin is fully reverted by optimal [Ca2+] in incubations. The effects of EGTA, EDTA and calcimycin in preincubation are not additive. The results suggest that an additional calcium, lost during preincubations from a site with affinity near 1 microM, is necessary for full activation of the ATPase.
Biochimica et Biophysica Acta | 1990
Guillermo L. Alonso; Delia Takara; Débora A. González
The Ca2(+)-dependent adenosinetriphosphatase (Ca2(+)-ATPase) from the sarcoplasmic reticulum (SR) of rat skeletal muscles is phosphorylated by inorganic phosphate (Pi) in the absence of Ca2+. The reaction can be described by the following simplified scheme: [formula: see text] where E-P is a covalent, acid-stable and ADP-insensitive phosphoenzyme, and E.Pi is a noncovalent and acid-labile complex. The reaction is Mg2(+)-dependent. Membrane fragments deposited on Millipore filters were successively perfused with two solutions, at constant flow. The effluent samples were analyzed. The perfused solutions were Ca2+ free and always contained 40% dimethylsulfoxide (DMSO), plus other reactants. Following the successive perfusion of solutions without and with [32P]Pi, 32P binding is only detected in the presence of Mg2+, indicating the formation of the phosphoenzymes (E.Pi and E-P). Following perfusions of the phosphoenzymes with 5% trichloroacetic acid, 32P release indicates the amount of the acid-labile moiety (E.Pi). After phosphorylations, the filters were washed with acid and unlabeled Pi, and the remaining radioactivity was measured to evaluate the acid-stable phosphoenzyme (E-P). The acid-labile and acid-stable phosphoenzymes amounted, respectively, 0.72 +/- 0.12, and 1.48 +/- 0.10 nmol of Pi/mg of protein ( +/- S.E., n = 5), after phosphorylations with 20 microM Pi. The results indicate: (1) The method allowed the evaluation of the acid-labile intermediate of the SR Ca2(+)-ATPase cycle. Keq = k2/k-2), in the above scheme, approaches 2.0. (2) The substrate of the phosphorylation reaction, in the presence of DMSO, is likely to be the Mg.Pi complex, since Mg2+ is necessary for step 1 in the above scheme.
Naunyn-schmiedebergs Archives of Pharmacology | 2013
Gabriel Antonio Sánchez; D. E. Di Croce; C. de la Cal; Susana Beatriz Richard; Delia Takara
The effect of the local anesthetics procaine and tetracaine on sarcoplasmic reticulum membranes isolated from two masticatory muscles, masseter and medial pterygoid, was tested and compared to fast-twitch muscles. The effects of the anesthetics on Ca-ATPase activity, calcium binding, uptake, and phosphorylation of the enzyme by inorganic phosphate (Pi) were tested with radioisotopic methods. Calcium binding to the Ca-ATPase was non-competitively inhibited, and the enzymatic activity decreased in a concentration-dependent manner. The inhibition of the activity depended on pH, calcium concentration, the presence of the calcium ionophore calcimycin, and the membrane protein concentration. Unlike fast-twitch membranes, the pre-exposure of the masseter and medial pterygoid membranes to the anesthetics enhanced the enzymatic activity in the absence of calcimycin, supporting their permeabilizing effect. Procaine and tetracaine also interfered with the calcium transport capability, decreasing the maximal uptake without modification of the calcium affinity for the ATPase. Besides, the anesthetics inhibited the phosphorylation of the enzyme by Pi in a competitive manner. Tetracaine revealed a higher inhibitory potency on Ca-ATPase compared to procaine, and the inhibitory concentrations were lower than usual clinical doses. It is concluded that procaine and tetracaine not only affect key steps of the Ca-ATPase enzymatic cycle but also exert an indirect effect on membrane permeability to calcium and suggest that the consequent myoplasmic calcium increase induced by the anesthetics might account for myotoxic effects, such as sustained contraction and eventual rigidity of both fast-twitch and masticatory muscles.
Archives of Oral Biology | 2012
Gabriel Antonio Sánchez; Daniel Eduardo Di Croce; Ana Clara Casadoumecq; Susana Beatriz Richard; Delia Takara
OBJECTIVE The aim of this work was to isolate the sarcoplasmic reticulum (SR) Ca-ATPase from rabbit temporalis muscle and to determine the optimal conditions for calcium transport and enzymatic activity. DESIGN SR vesicles were isolated from rabbit temporalis muscle by differential centrifugation, the protein composition analyzed by electrophoresis and compared to fast-twitch muscle membrane suspensions. ELISA was used to determine the sarcoendoplasmic reticulum Ca-ATPase (SERCA) isoform. Ca-ATPase activity was determined by a colorimetric method. Calcium-binding to the Ca-ATPase, calcium uptake, calcium efflux and phosphorylation by P(i) were determined with radioisotopic techniques. RESULTS Sixty five percent of the total protein concentration of SR membranes suspensions from rabbit temporalis corresponded to SERCA. Of the total SERCA protein, 64% was SERCA 2, 35% was SERCA 1 and less than 1% was SERCA 3. The optimal conditions of the SERCA isolated from rabbit temporalis muscle were: pH 7.2, 5 μM Ca(2+), 100 μM EGTA, 90 μM Mg(2+), 3mM ATP and 100mM KCl and did not differ from fast-twitch skeletal muscle. The temporalis maximal calcium uptake and Ca-ATPase activity were lower but the sensitivity to the specific Ca-ATPase inhibitor thapsigargin was higher. Calcium-binding to the enzyme and calcium efflux were similar while the phosphorylation of the enzyme by P(i) was lower. CONCLUSION The lower enzymatic activity and calcium transport capability of the Ca-ATPase isolated from rabbit temporalis, and the higher sensitivity to inhibitory drugs are consistent with the presence of a substantial proportion of SERCA 2, which can be expected in other rabbit masticatory muscles.
Naunyn-schmiedebergs Archives of Pharmacology | 2000
Delia Takara; Gabriel A. Sánchez; Guillermo L. Alonso
Journal of Theoretical Biology | 2001
Guillermo L. Alonso; Débora A. González; Delia Takara; Mariano Aníbal Ostuni; Gabriel A. Sánchez