Delia Yubero
Instituto de Salud Carlos III
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Delia Yubero.
PLOS ONE | 2016
Delia Yubero; Joan Villarroya; Desiree Henares; C. Jou; María Ángeles Prieto Rodríguez; Federico Ramos; A. Nascimento; C. Ortez; Jaume Campistol; Belén Pérez-Dueñas; Mar O'Callaghan; M. Pineda; Angeles Garcia-Cazorla; Jaume Colomer Oferil; Julio Montoya; Eduardo Ruiz-Pesini; Sonia Emperador; Marija Meznaric; Laura Campderros; Susana G. Kalko; Francesc Villarroya; Rafael Artuch; Cecilia Jimenez-Mallebrera
Background We previously described increased levels of growth and differentiation factor 15 (GDF-15) in skeletal muscle and serum of patients with mitochondrial diseases. Here we evaluated GDF-15 as a biomarker for mitochondrial diseases affecting children and compared it to fibroblast-growth factor 21 (FGF-21). To investigate the mechanism of GDF-15 induction in these pathologies we measured its expression and secretion in response to mitochondrial dysfunction. Methods We analysed 59 serum samples from 48 children with mitochondrial disease, 19 samples from children with other neuromuscular diseases and 33 samples from aged-matched healthy children. GDF-15 and FGF-21 circulating levels were determined by ELISA. Results Our results showed that in children with mitochondrial diseases GDF-15 levels were on average increased by 11-fold (mean 4046pg/ml, 1492 SEM) relative to healthy (350, 21) and myopathic (350, 32) controls. The area under the curve for the receiver-operating-characteristic curve for GDF-15 was 0.82 indicating that it has a good discriminatory power. The overall sensitivity and specificity of GDF-15 for a cut-off value of 550pg/mL was 67.8% (54.4%-79.4%) and 92.3% (81.5%-97.9%), respectively. We found that elevated levels of GDF-15 and or FGF-21 correctly identified a larger proportion of patients than elevated levels of GDF-15 or FGF-21 alone. GDF-15, as well as FGF-21, mRNA expression and protein secretion, were significantly induced after treatment of myotubes with oligomycin and that levels of expression of both factors significantly correlated. Conclusions Our data indicate that GDF-15 is a valuable serum quantitative biomarker for the diagnosis of mitochondrial diseases in children and that measurement of both GDF-15 and FGF-21 improves the disease detection ability of either factor separately. Finally, we demonstrate for the first time that GDF-15 is produced by skeletal muscle cells in response to mitochondrial dysfunction and that its levels correlate in vitro with FGF-21 levels.
Mitochondrion | 2016
Delia Yubero; Miguel A. Martín; Julio Montoya; Antonia Ribes; Manuela Grazina; Eva Trevisson; Juan Carlos Rodriguez-Aguilera; Iain Hargreaves; Leonardo Salviati; Plácido Navas; Rafael Artuch; C. Jou; C. Jimenez-Mallebrera; A. Nascimento; Belén Pérez-Dueñas; Carlos Ortez; Federico Ramos; Jaume Colomer; Mar O’Callaghan; Mercè Pineda; Angels García-Cazorla; Carmina Espinós; Angels Ruiz; Alfons Macaya; Anna Marcé-Grau; Judit García-Villoria; Angela Arias; Sonia Emperador; Eduardo Ruiz-Pesini; Ester López-Gallardo
We evaluated the coenzyme Q₁₀ (CoQ) levels in patients who were diagnosed with mitochondrial oxidative phosphorylation (OXPHOS) and non-OXPHOS disorders (n=72). Data from the 72 cases in this study revealed that 44.4% of patients showed low CoQ concentrations in either their skeletal muscle or skin fibroblasts. Our findings suggest that secondary CoQ deficiency is a common finding in OXPHOS and non-OXPHOS disorders. We hypothesize that cases of CoQ deficiency associated with OXPHOS defects could be an adaptive mechanism to maintain a balanced OXPHOS, although the mechanisms explaining these deficiencies and the pathophysiological role of secondary CoQ deficiency deserves further investigation.
PLOS ONE | 2016
Delia Yubero; Nuria Brandi; Aida Ormazabal; Angels García-Cazorla; Belén Pérez-Dueñas; Jaime Campistol; Antonia Ribes; Francesc Palau; Rafael Artuch; Judith Armstrong
Background Next-generation sequencing (NGS) technology has allowed the promotion of genetic diagnosis and are becoming increasingly inexpensive and faster. To evaluate the utility of NGS in the clinical field, a targeted genetic panel approach was designed for the diagnosis of a set of inborn errors of metabolism (IEM). The final aim of the study was to compare the findings for the diagnostic yield of NGS in patients who presented with consistent clinical and biochemical suspicion of IEM with those obtained for patients who did not have specific biomarkers. Methods The subjects studied (n = 146) were classified into two categories: Group 1 (n = 81), which consisted of patients with clinical and biochemical suspicion of IEM, and Group 2 (n = 65), which consisted of IEM cases with clinical suspicion and unspecific biomarkers. A total of 171 genes were analyzed using a custom targeted panel of genes followed by Sanger validation. Results Genetic diagnosis was achieved in 50% of patients (73/146). In addition, the diagnostic yield obtained for Group 1 was 78% (63/81), and this rate decreased to 15.4% (10/65) in Group 2 (X2 = 76.171; p < 0.0001). Conclusions A rapid and effective genetic diagnosis was achieved in our cohort, particularly the group that had both clinical and biochemical indications for the diagnosis.
European Journal of Human Genetics | 2016
Claudio Asencio; M. A. C. Rodríguez-Hernández; Paz Briones; Julio Montoya; Ana Cortés; Sonia Emperador; Angela Gavilán; Eduardo Ruiz-Pesini; Delia Yubero; Mercedes Pineda; María M. O'Callaghan; María Alcázar-Fabra; Leonardo Salviati; Rafael Artuch; Plácido Navas
Coenzyme Q10 (CoQ10) deficiency is associated to a variety of clinical phenotypes including neuromuscular and nephrotic disorders. We report two unrelated boys presenting encephalopathy, ataxia, and lactic acidosis, who died with necrotic lesions in different areas of brain. Levels of CoQ10 and complex II+III activity were increased in both skeletal muscle and fibroblasts, but it was a consequence of higher mitochondria mass measured as citrate synthase. In fibroblasts, oxygen consumption was also increased, whereas steady state ATP levels were decreased. Antioxidant enzymes such as NQO1 and MnSOD and mitochondrial marker VDAC were overexpressed. Mitochondria recycling markers Fis1 and mitofusin, and mtDNA regulatory Tfam were reduced. Exome sequencing showed mutations in PDHA1 in the first patient and in PDHB in the second. These genes encode subunits of pyruvate dehydrogenase complex (PDH) that could explain the compensatory increase of CoQ10 and a defect of mitochondrial homeostasis. These two cases describe, for the first time, a mitochondrial disease caused by PDH defects associated with unbalanced of both CoQ10 content and mitochondria homeostasis, which severely affects the brain. Both CoQ10 and mitochondria homeostasis appears as new markers for PDH associated mitochondrial disorders.
Biofactors | 2015
Delia Yubero; Maria Ramos; Viruna Neergheen; Plácido Navas; Rafael Artuch; Iain Hargreaves
Kidney dysfunction is being increasingly associated with mitochondrial diseases and coenzyme Q10 (CoQ) deficiency. The assessment of CoQ status requires the biochemical determination of CoQ in biological fluids and different cell types, but no methods have been developed as yet for the analysis of CoQ in excretory systems. The aim of this study was to standardize a new procedure for urinary CoQ determination and to establish reference values for a paediatric population. Urinary CoQ was analyzed by HPLC with electrochemical detection. Reference values (n = 43) were stratified into two age groups (2-10 years: range 24-109 nmol CoQ/gram of pellet protein; 11-17 years: range 43-139 nmol CoQ/gram of pellet protein). In conclusion, urinary CoQ analysis is a noninvasive, reliable, and reproducible method to determine urinary tract CoQ status.
BMC Pediatrics | 2014
Delia Yubero; Mar O’Callaghan; Aida Ormazabal; Judith Armstrong; Carmina Espinos; María Ángeles Prieto Rodríguez; Cristina Jou; Esperanza Castejon; Maria A Aracil; Maria V Cascajo; Angela Gavilán; Paz Briones; Cecilia Jimenez-Mallebrera; M. Pineda; Plácido Navas; Rafael Artuch
BackgroundIt has been demonstrated that glucose transporter (GLUT1) deficiency in a mouse model causes a diminished cerebral lipid synthesis. This deficient lipid biosynthesis could contribute to secondary CoQ deficiency. We report here, for the first time an association between GLUT1 and coenzyme Q10 deficiency in a pediatric patient.Case presentationWe report a 15 year-old girl with truncal ataxia, nystagmus, dysarthria and myoclonic epilepsy as the main clinical features. Blood lactate and alanine values were increased, and coenzyme Q10 was deficient both in muscle and fibroblasts. Coenzyme Q10 supplementation was initiated, improving ataxia and nystagmus. Since dysarthria and myoclonic epilepsy persisted, a lumbar puncture was performed at 12 years of age disclosing diminished cerebrospinal glucose concentrations. Diagnosis of GLUT1 deficiency was confirmed by the presence of a de novo heterozygous variant (c.18+2T>G) in the SLC2A1 gene. No mutations were found in coenzyme Q10 biosynthesis related genes. A ketogenic diet was initiated with an excellent clinical outcome. Functional studies in fibroblasts supported the potential pathogenicity of coenzyme Q10 deficiency in GLUT1 mutant cells when compared with controls.ConclusionOur results suggest that coenzyme Q10 deficiency might be a new factor in the pathogenesis of G1D, although this deficiency needs to be confirmed in a larger group of G1D patients as well as in animal models. Although ketogenic diet seems to correct the clinical consequences of CoQ deficiency, adjuvant treatment with CoQ could be trialled in this condition if our findings are confirmed in further G1D patients.
Molecular Syndromology | 2014
Delia Yubero; Rafael Artuch; John M. Land; Simon Heales; Iain Hargreaves
Coenzyme Q10 (CoQ10) deficiency appears to have a particularly heterogeneous clinical presentation. However, there appear to be 5 recognisable clinical phenotypes: encephalomyopathy, severe infantile multisystemic disease, nephropathy, cerebellar ataxia, and isolated myopathy. However, although useful, clinical symptoms alone are insufficient for the definitive diagnosis of CoQ10 deficiency which relies upon biochemical assessment of tissue CoQ10 status. In this article, we review the biochemical methods used in the diagnosis of human CoQ10 deficiency and indicate the most appropriate tissues for this evaluation.
Stem Cells | 2017
Damià Romero-Moya; Carlos Santos-Ocaña; Julio Castaño; Gloria Garrabou; José A. Rodríguez-Gómez; Vanesa Ruiz‐Bonilla; Clara Bueno; Patricia González-Rodríguez; Alessandra Giorgetti; Eusebio Perdiguero; Cristina Prieto; Constanza Moren‐Nuñez; Daniel J. Fernández‐Ayala; Maria Victoria Cascajo; Iván Velasco; Josep M. Canals; Raquel Montero; Delia Yubero; Cristina Jou; José López-Barneo; Francesc Cardellach; Pura Muñoz-Cánoves; Rafael Artuch; Plácido Navas; Pablo Menendez
Coenzyme Q10 (CoQ10) plays a crucial role in mitochondria as an electron carrier within the mitochondrial respiratory chain (MRC) and is an essential antioxidant. Mutations in genes responsible for CoQ10 biosynthesis (COQ genes) cause primary CoQ10 deficiency, a rare and heterogeneous mitochondrial disorder with no clear genotype–phenotype association, mainly affecting tissues with high‐energy demand including brain and skeletal muscle (SkM). Here, we report a four‐year‐old girl diagnosed with minor mental retardation and lethal rhabdomyolysis harboring a heterozygous mutation (c.483G > C (E161D)) in COQ4. The patients fibroblasts showed a decrease in [CoQ10], CoQ10 biosynthesis, MRC activity affecting complexes I/II + III, and respiration defects. Bona fide induced pluripotent stem cell (iPSCs) lines carrying the COQ4 mutation (CQ4‐iPSCs) were generated, characterized and genetically edited using the CRISPR‐Cas9 system (CQ4ed‐iPSCs). Extensive differentiation and metabolic assays of control‐iPSCs, CQ4‐iPSCs and CQ4ed‐iPSCs demonstrated a genotype association, reproducing the disease phenotype. The COQ4 mutation in iPSC was associated with CoQ10 deficiency, metabolic dysfunction, and respiration defects. iPSC differentiation into SkM was compromised, and the resulting SkM also displayed respiration defects. Remarkably, iPSC differentiation in dopaminergic or motor neurons was unaffected. This study offers an unprecedented iPSC model recapitulating CoQ10 deficiency‐associated functional and metabolic phenotypes caused by COQ4 mutation. Stem Cells 2017;35:1687–1703
Journal of Clinical Medicine | 2017
Delia Yubero; George Allen; Rafael Artuch
Coenzyme Q10 (CoQ) is a lipid that is ubiquitously synthesized in tissues and has a key role in mitochondrial oxidative phosphorylation. Its biochemical determination provides insight into the CoQ status of tissues and may detect CoQ deficiency that can result from either an inherited primary deficiency of CoQ metabolism or may be secondary to different genetic and environmental conditions. Rapid identification of CoQ deficiency can also allow potentially beneficial treatment to be initiated as early as possible. CoQ may be measured in different specimens, including plasma, blood mononuclear cells, platelets, urine, muscle, and cultured skin fibroblasts. Blood and urinary CoQ also have good utility for CoQ treatment monitoring.
Mitochondrion | 2015
María M. O'Callaghan; Sonia Emperador; Mercè Pineda; Ester López-Gallardo; Delia Yubero; C. Jou; C. Jimenez-Mallebrera; A. Nascimento; Isidre Ferrer; Angels García-Cazorla; Eduardo Ruiz-Pesini; Julio Montoya; Rafael Artuch
In this work, we studied the mtDNA mutations m.3243A>G, m.3252A>G, m.15923A>G, m.13513G>A, m.8993T>G and m.9176T>C in the blood, urine and buccal mucosa of a cohort of 27 subjects. Urine cells had the highest mutation load for all of the mtDNA mutations studied. The mutation loads in the blood, urine and the buccal mucosa were significantly higher in the mitochondrial disorder group that manifested clinical signs than in the asymptomatic subjects. In conclusion, urine is a suitable biological sample for molecular diagnosis of mtDNA mutations and for the study of the attendant risk of recurrence in the offspring of asymptomatic mothers identified as non-carriers after mutation analysis in blood.