Deliang Guo
Ohio State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Deliang Guo.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Qihui Shi; Lidong Qin; Wei Wei; Feng Geng; Rong Fan; Young Shik Shin; Deliang Guo; Leroy Hood; Paul S. Mischel; James R. Heath
We describe a microchip designed to quantify the levels of a dozen cytoplasmic and membrane proteins from single cells. We use the platform to assess protein–protein interactions associated with the EGF-receptor-mediated PI3K signaling pathway. Single-cell sensitivity is achieved by isolating a defined number of cells (n = 0–5) in 2 nL volume chambers, each of which is patterned with two copies of a miniature antibody array. The cells are lysed on-chip, and the levels of released proteins are assayed using the antibody arrays. We investigate three isogenic cell lines representing the cancer glioblastoma multiforme, at the basal level, under EGF stimulation, and under erlotinib inhibition plus EGF stimulation. The measured protein abundances are consistent with previous work, and single-cell analysis uniquely reveals single-cell heterogeneity, and different types and strengths of protein–protein interactions. This platform helps provide a comprehensive picture of altered signal transduction networks in tumor cells and provides insight into the effect of targeted therapies on protein signaling networks.
Cancer Discovery | 2011
Kazuhiro Tanaka; Ivan Babic; David Nathanson; David Akhavan; Deliang Guo; Beatrice Gini; Julie Dang; Shaojun Zhu; Huijun Yang; Jason de Jesus; Ali Nael Amzajerdi; Yinan Zhang; Christian C. Dibble; Hancai Dan; Amanda L. Rinkenbaugh; William H. Yong; Harry V. Vinters; Joseph F. Gera; Webster K. Cavenee; Timothy F. Cloughesy; Brendan D. Manning; Albert S. Baldwin; Paul S. Mischel
UNLABELLED Although it is known that mTOR complex 2 (mTORC2) functions upstream of Akt, the role of this protein kinase complex in cancer is not well understood. Through an integrated analysis of cell lines, in vivo models, and clinical samples, we demonstrate that mTORC2 is frequently activated in glioblastoma (GBM), the most common malignant primary brain tumor of adults. We show that the common activating epidermal growth factor receptor (EGFR) mutation (EGFRvIII) stimulates mTORC2 kinase activity, which is partially suppressed by PTEN. mTORC2 signaling promotes GBM growth and survival and activates NF-κB. Importantly, this mTORC2-NF-κB pathway renders GBM cells and tumors resistant to chemotherapy in a manner independent of Akt. These results highlight the critical role of mTORC2 in the pathogenesis of GBM, including through the activation of NF-κB downstream of mutant EGFR, leading to a previously unrecognized function in cancer chemotherapy resistance. These findings suggest that therapeutic strategies targeting mTORC2, alone or in combination with chemotherapy, will be effective in the treatment of cancer. SIGNIFICANCE This study demonstrates that EGFRvIII-activated mTORC2 signaling promotes GBM proliferation, survival, and chemotherapy resistance through Akt-independent activation of NF-κB. These results highlight the role of mTORC2 as an integrator of two canonical signaling networks that are commonly altered in cancer, EGFR/phosphoinositide-3 kinase (PI3K) and NF-κB. These results also validate the importance of mTORC2 as a cancer target and provide new insights into its role in mediating chemotherapy resistance, suggesting new treatment strategies.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Deliang Guo; Isabel Hildebrandt; Robert M. Prins; Horacio Soto; Mary M. Mazzotta; Julie Dang; Johannes Czernin; John Y.-J. Shyy; Andrew D. Watson; Michael E. Phelps; Caius G. Radu; Timothy F. Cloughesy; Paul S. Mischel
The EGFR/PI3K/Akt/mTOR signaling pathway is activated in many cancers including glioblastoma, yet mTOR inhibitors have largely failed to show efficacy in the clinic. Rapamycin promotes feedback activation of Akt in some patients, potentially underlying clinical resistance and raising the need for alternative approaches to block mTOR signaling. AMPK is a metabolic checkpoint that integrates growth factor signaling with cellular metabolism, in part by negatively regulating mTOR. We used pharmacological and genetic approaches to determine whether AMPK activation could block glioblastoma growth and cellular metabolism, and we examined the contribution of EGFR signaling in determining response in vitro and in vivo. The AMPK-agonist AICAR, and activated AMPK adenovirus, inhibited mTOR signaling and blocked the growth of glioblastoma cells expressing the activated EGFR mutant, EGFRvIII. Across a spectrum of EGFR-activated cancer cell lines, AICAR was more effective than rapamycin at blocking tumor cell proliferation, despite less efficient inhibition of mTORC1 signaling. Unexpectedly, addition of the metabolic products of cholesterol and fatty acid synthesis rescued the growth inhibitory effect of AICAR, whereas inhibition of these lipogenic enzymes mimicked AMPK activation, thus demonstrating that AMPK blocked tumor cell proliferation primarily through inhibition of cholesterol and fatty acid synthesis. Most importantly, AICAR treatment in mice significantly inhibited the growth and glycolysis (as measured by 18fluoro-2-deoxyglucose microPET) of glioblastoma xenografts engineered to express EGFRvIII, but not their parental counterparts. These results suggest a mechanism by which AICAR inhibits the proliferation of EGFRvIII expressing glioblastomas and point toward a potential therapeutic strategy for targeting EGFR-activated cancers.
Circulation Research | 2007
Deliang Guo; Shu Chien; John Y.-J. Shyy
Steady laminar flow in the straight parts of the arterial tree is atheroprotective, whereas disturbed flow with oscillation in branch points and the aortic root are athero-prone, in part, because of the distinct roles of the flow patterns in regulating the cell cycle of vascular endothelial cells (ECs). To elucidate the molecular basis underlying the endothelial cell cycle regulated by distinct flow patterns, we conducted flow-channel experiments to investigate the effects of laminar versus oscillatory flows on activation of AMP-activated protein kinase (AMPK) and Akt in ECs. Laminar flow caused a transient activation of both AMPK and Akt, but oscillatory flow activated only Akt, with AMPK being maintained at its basal level. Constitutively active and dominant-negative mutants of AMPK and Akt were used to elucidate further the positive effect of Akt and negative role of AMPK in mediating mTOR (mammalian target of rapamycin) and its target p70S6 kinase (S6K) in response to laminar and oscillatory flows. Measurements of phosphorylation of mTOR Ser2448 and S6K Thr389 showed that AMPK, by counteracting Akt under laminar flow, resulted in a transient activation of S6K. Under oscillatory flow, because of the lack of AMPK activation to effect negative regulation, S6K was activated in a sustained manner. As a functional consequence, AMPK activation attenuated cell cycle progression in response to both laminar and oscillatory flows. In contrast, AMPK inhibition promoted EC cycle progression by decreasing the cell population in the G0/G1 phase and increasing it in the S+G2/M phase. In vivo, phosphorylation of the promitotic S6K in mouse thoracic aorta was much less than that in mouse aortic root. In contrast, AMPK phosphorylation was higher in the thoracic aorta. These results provide a molecular mechanism by which laminar versus oscillatory flow regulates the endothelial cell cycle.
Cell Metabolism | 2013
Ivan Babic; Erik S. Anderson; Kazuhiro Tanaka; Deliang Guo; Kenta Masui; Bing Li; Shaojun Zhu; Yuchao Gu; Genaro R. Villa; David Akhavan; David Nathanson; Beatrice Gini; Sergey Mareninov; Rui Li; Carolina Espindola Camacho; Siavash K. Kurdistani; Ascia Eskin; Stanley F. Nelson; William H. Yong; Webster K. Cavenee; Timothy F. Cloughesy; Heather R. Christofk; Douglas L. Black; Paul S. Mischel
Alternative splicing contributes to diverse aspects of cancer pathogenesis including altered cellular metabolism, but the specificity of the process or its consequences are not well understood. We characterized genome-wide alternative splicing induced by the activating EGFRvIII mutation in glioblastoma (GBM). EGFRvIII upregulates the heterogeneous nuclear ribonucleoprotein (hnRNP) A1 splicing factor, promoting glycolytic gene expression and conferring significantly shorter survival in patients. HnRNPA1 promotes splicing of a transcript encoding the Myc-interacting partner Max, generating Delta Max, an enhancer of Myc-dependent transformation. Delta Max, but not full-length Max, rescues Myc-dependent glycolytic gene expression upon induced EGFRvIII loss, and correlates with hnRNPA1 expression and downstream Myc-dependent gene transcription in patients. Finally, Delta Max is shown to promote glioma cell proliferation in vitro and augment EGFRvIII expressing GBM growth in vivo. These results demonstrate an important role for alternative splicing in GBM and identify Delta Max as a mediator of Myc-dependent tumor cell metabolism.
Cancer Cell | 2015
Chunming Cheng; Peng Ru; Feng Geng; Junfeng Liu; Ji Young Yoo; Xiaoning Wu; Xiang Cheng; Vanessa Euthine; Peng Hu; Jeffrey Yunhua Guo; Etienne Lefai; Balveen Kaur; Axel Nohturfft; Jianjie Ma; Arnab Chakravarti; Deliang Guo
Tumorigenesis is associated with increased glucose consumption and lipogenesis, but how these pathways are interlinked is unclear. Here, we delineate a pathway in which EGFR signaling, by increasing glucose uptake, promotes N-glycosylation of sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) and consequent activation of SREBP-1, an ER-bound transcription factor with central roles in lipid metabolism. Glycosylation stabilizes SCAP and reduces its association with Insig-1, allowing movement of SCAP/SREBP to the Golgi and consequent proteolytic activation of SREBP. Xenograft studies reveal that blocking SCAP N-glycosylation ameliorates EGFRvIII-driven glioblastoma growth. Thus, SCAP acts as key glucose-responsive protein linking oncogenic signaling and fuel availability to SREBP-dependent lipogenesis. Targeting SCAP N-glycosylation may provide a promising means of treating malignancies and metabolic diseases.
Clinical Cancer Research | 2013
Beatrice Gini; Ciro Zanca; Deliang Guo; Tomoo Matsutani; Kenta Masui; Shiro Ikegami; Huijun Yang; David Nathanson; Genaro R. Villa; David Shackelford; Shaojun Zhu; Kazuhiro Tanaka; Ivan Babic; David Akhavan; Kelly Y. Lin; Alvaro Assuncao; Yuchao Gu; Bruno Bonetti; Deborah Mortensen; Shuichan Xu; Heather Raymon; Webster K. Cavenee; Frank Furnari; C. David James; Guido Kroemer; James R. Heath; Kristen Hege; Rajesh Chopra; Timothy F. Cloughesy; Paul S. Mischel
Purpose: mTOR pathway hyperactivation occurs in approximately 90% of glioblastomas, but the allosteric mTOR inhibitor rapamycin has failed in the clinic. Here, we examine the efficacy of the newly discovered ATP-competitive mTOR kinase inhibitors CC214-1 and CC214-2 in glioblastoma, identifying molecular determinants of response and mechanisms of resistance, and develop a pharmacologic strategy to overcome it. Experimental Design: We conducted in vitro and in vivo studies in glioblastoma cell lines and an intracranial model to: determine the potential efficacy of the recently reported mTOR kinase inhibitors CC214-1 (in vitro use) and CC214-2 (in vivo use) at inhibiting rapamycin-resistant signaling and blocking glioblastoma growth and a novel single-cell technology—DNA Encoded Antibody Libraries—was used to identify mechanisms of resistance. Results: Here, we show that CC214-1 and CC214-2 suppress rapamycin-resistant mTORC1 signaling, block mTORC2 signaling, and significantly inhibit the growth of glioblastomas in vitro and in vivo. EGFRvIII expression and PTEN loss enhance sensitivity to CC214 compounds, consistent with enhanced efficacy in strongly mTOR-activated tumors. Importantly, CC214 compounds potently induce autophagy, preventing tumor cell death. Genetic or pharmacologic inhibition of autophagy greatly sensitizes glioblastoma cells and orthotopic xenografts to CC214-1- and CC214-2–induced cell death. Conclusions: These results identify CC214-1 and CC214-2 as potentially efficacious mTOR kinase inhibitors in glioblastoma, and suggest a strategy for identifying patients most likely to benefit from mTOR inhibition. In addition, this study also shows a central role for autophagy in preventing mTOR-kinase inhibitor-mediated tumor cell death, and suggests a pharmacologic strategy for overcoming it. Clin Cancer Res; 19(20); 5722–32. ©2013 AACR.
Cancers | 2013
Peng Ru; Terence M. Williams; Arnab Chakravarti; Deliang Guo
Constitutively activated oncogenic signaling via genetic mutations such as in the EGFR/PI3K/Akt and Ras/RAF/MEK pathways has been recognized as a major driver for tumorigenesis in most cancers. Recent insights into tumor metabolism have further revealed that oncogenic signaling pathways directly promote metabolic reprogramming to upregulate biosynthesis of lipids, carbohydrates, protein, DNA and RNA, leading to enhanced growth of human tumors. Therefore, targeting cell metabolism has become a novel direction for drug development in oncology. In malignant gliomas, metabolism pathways of glucose, glutamine and lipid are significantly reprogrammed. Moreover, molecular mechanisms causing these metabolic changes are just starting to be unraveled. In this review, we will summarize recent studies revealing critical gene alterations that lead to metabolic changes in malignant gliomas, and also discuss promising therapeutic strategies via targeting the key players in metabolic regulation.
Clinical Cancer Research | 2016
Feng Geng; Xiang Cheng; Xiaoning Wu; Ji Young Yoo; Chunming Cheng; Jeffrey Yunhua Guo; Xiaokui Mo; Peng Ru; Brian Hurwitz; Sung-Hak Kim; Jose Otero; Vinay K. Puduvalli; Etienne Lefai; Jianjie Ma; Ichiro Nakano; Craig Horbinski; Balveen Kaur; Arnab Chakravarti; Deliang Guo
Purpose: Elevated lipogenesis regulated by sterol regulatory element-binding protein-1 (SREBP-1), a transcription factor playing a central role in lipid metabolism, is a novel characteristic of glioblastoma (GBM). The aim of this study was to identify effective approaches to suppress GBM growth by inhibition of SREBP-1. As SREBP activation is negatively regulated by endoplasmic reticulum (ER) cholesterol, we sought to determine whether suppression of sterol O-acyltransferase (SOAT), a key enzyme converting ER cholesterol to cholesterol esters (CE) to store in lipid droplets (LDs), effectively suppressed SREBP-1 and blocked GBM growth. Experimental Design: The presence of LDs in glioma patient tumor tissues was analyzed using immunofluorescence, immunohistochemistry, and electronic microscopy. Western blotting and real-time PCR were performed to analyze protein levels and gene expression of GBM cells, respectively. Intracranial GBM xenografts were used to determine the effects of genetically silencing SOAT1 and SREBP-1 on tumor growth. Results: Our study unraveled that cholesterol esterification and LD formation are signature of GBM, and human patients with glioma possess elevated LDs that correlate with GBM progression and poor survival. We revealed that SOAT1 is highly expressed in GBM and functions as a key player in controlling the cholesterol esterification and storage in GBM. Targeting SOAT1 suppresses GBM growth and prolongs survival in xenograft models via inhibition of SREBP-1–regulated lipid synthesis. Conclusions: Cholesterol esterification and storage in LDs are novel characteristics of GBM, and inhibiting SOAT1 to block cholesterol esterification is a promising therapeutic strategy to treat GBM by suppressing SREBP-1. Clin Cancer Res; 22(21); 5337–48. ©2016 AACR.
Cell Cycle | 2010
Deliang Guo; Timothy F. Cloughesy; Caius G. Radu; Paul S. Mischel
Comment on: Guo et al. PNAS 2009;106(31):12932-7.