Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deling Yin is active.

Publication


Featured researches published by Deling Yin.


The Journal of Clinical Endocrinology and Metabolism | 2009

Insulin-Stimulated Translocation of Glucose Transporter (GLUT) 12 Parallels That of GLUT4 in Normal Muscle

Charles A. Stuart; Mary E. A. Howell; Yi Zhang; Deling Yin

CONTEXT GLUT4 is the predominant glucose transporter isoform expressed in fat and muscle. In GLUT4 null mice, insulin-stimulated glucose uptake into muscle was diminished but not eliminated, suggesting that another insulin-sensitive system was present. OBJECTIVE This study was intended to determine whether insulin caused GLUT12 translocation in muscle. DESIGN Six normal volunteers had muscle biopsies before and after euglycemic insulin infusions. SETTING Infusions and biopsies were performed in an outpatient clinic. PARTICIPANTS Subjects were nonobese, young adults with no family history of diabetes. MAIN OUTCOME MEASURES GLUT12, GLUT4, and GLUT1 proteins were quantified in muscle biopsy fractions. Cultured myoblasts were used to determine whether GLUT12 translocation was phosphatidyl inositol-3 kinase (PI3-K)-dependent. INTERVENTION Insulin was infused at 40 mU/m(2) x min for 3 h. RESULTS In human muscle, insulin caused a shift of a portion of GLUT12 from intracellular low-density microsomes to the plasma membrane (PM) fraction (17% in PM at baseline, 38% in PM after insulin). Insulin increased GLUT4 in PM from 13 to 42%. GLUT1 was predominantly in the PM fractions at baseline and did not change significantly after insulin. L6 myoblasts in culture also expressed and translocated GLUT12 in response to insulin, but inhibiting PI3-K prevented the translocation of GLUT12 and GLUT4. CONCLUSIONS Insulin causes GLUT12 to translocate from an intracellular location to the plasma membrane in normal human skeletal muscle. Translocation of GLUT12 in cultured myoblasts was dependent on activation of PI3-K. GLUT12 may have evolutionarily preceded GLUT4 and now provides redundancy to the dominant GLUT4 system in muscle.


Journal of Neuroimmunology | 2006

Morphine promotes Jurkat cell apoptosis through pro-apoptotic FADD/P53 and anti-apoptotic PI3K/Akt/NF-κB pathways

Deling Yin; Michael L. Woodruff; Ying Zhang; Sarah Whaley; Jun-Ying Miao; Kenneth E. Ferslew; Jing Zhao; Charles A. Stuart

Opiates have been shown to inhibit cell growth and trigger apoptosis, but the underlying molecular mechanisms remain unclear. We have previously shown that morphine induces Fas expression and promotes Fas-mediated apoptosis. Here, we investigated the mechanisms by which morphine modulates apoptosis in human Jurkat cells. Morphine-induced apoptosis was inhibited by transfection with a dominant negative Fas-associated death domain (FADD) plasmid, revealing that morphine-induced apoptosis is dependent on FADD. Furthermore, suppression of endogenous p53 expression by RNA interference technology considerably attenuated the morphine-induced apoptosis. In addition, morphine-induced apoptosis seems to be dependent on the activation of phosphatidylinositol 3-kinase (PI3K), as PI3K inhibition by the PI3K inhibitor LY294002 significantly enhanced morphine-induced apoptosis. Moreover, inhibition of Akt or nuclear factor-kappaB (NF-kappaB) expression by RNA interference technology also dramatically increased morphine-induced apoptosis. Our study thus demonstrates that morphine induces Jurkat cell apoptosis through FADD/p53, anti-apoptotic PI3K/Akt and NF-kappaB pathways.


Biochimica et Biophysica Acta | 2013

Suppression of tumorigenicity by MicroRNA-138 through inhibition of EZH2-CDK4/6-pRb-E2F1 signal loop in glioblastoma multiforme

Shuwei Qiu; Daquan Huang; Deling Yin; Fangcheng Li; Xiang-Ping Li; Hsiang-Fu Kung; Ying Peng

Deregulation of microRNAs (miRNAs) is implicated in tumor progression. We attempt to identify the tumor suppressive miRNA not only down-regulated in glioblastoma multiforme (GBM) but also potent to inhibit the oncogene EZH2, and then investigate the biological function and pathophysiologic role of the candidate miRNA in GBM. In this study, we show that miRNA-138 is reduced in both GBM clinical specimens and cell lines, and is effective to inhibit EZH2 expression. Moreover, high levels of miR-138 are associated with long overall and progression-free survival of GBM patients from The Cancer Genome Atlas dataset (TCGA) data portal. Ectopic expression of miRNA-138 effectively inhibits GBM cell proliferation in vitro and tumorigenicity in vivo through inducing cell cycles G1/S arrest. Mechanism investigation reveals that miRNA-138 acquires tumor inhibition through directly targeting EZH2, CDK6, E2F2 and E2F3. Moreover, an EZH2-mediated signal loop, EZH2-CDK4/6-pRb-E2F1, is probably involved in GBM tumorigenicity, and this loop can be blocked by miRNA-138. Additionally, miRNA-138 negatively correlates to mRNA levels of EZH2 and CDK6 among GBM clinical samples from both TCGA and our small amount datasets. In conclusion, our data demonstrate a tumor suppressive role of miRNA-138 in GBM tumorigenicity, suggesting a potential application in GBM therapy.


Journal of Neuroimmunology | 2008

Chronic restraint stress promotes immune suppression through toll-like receptor 4-mediated phosphoinositide 3-kinase signaling.

Yi Zhang; Ying Zhang; Jun-Ying Miao; Gregory Hanley; Charles A. Stuart; Xiuli Sun; Tingting Chen; Deling Yin

Stress, either psychological or physical, can have a dramatic impact on the immune system. Toll-like receptors (TLRs) play a pivotal role in the induction of innate and adaptive immune response. We have reported that stress modulates the immune response in a TLR4-dependent manner. However, the mechanisms underlying TLR4-mediated signaling in stress modulation of immune system have not been identified. Here, we demonstrate an essential role for the TLR4-mediated phosphoinositide 3-kinase (PI3K)/Akt signaling. PI3K inhibition by inhibitors wortmannin or LY294002 abrogated protection of stress-induced immune suppression in TLR4-deficient mice compared with TLR4-deficient mice that did not receive the inhibitors. The mechanisms by which PI3K are increased in the TLR4-deficient lymphocytes may involve increased phosphorylation of Akt as well as increased phosphorylation of glycogen synthase kinase-3 beta (GSK-3 beta). The stress-mediated suppression of T help 1 (Th1) cytokine and increased production of Th2 cytokine was greatly reduced in TLR4 deficient mice compared with the wild type mice. Moreover, inhibition of PI3K diminished protection of the above Th1 and Th2 changes caused by stress in TLR4-deficient mice compared with non-stressed mice and the wild type mice. Our data demonstrated that TLR4 negatively regulates PI3K activity in wild type mice, leading to the observed the stress-induced immune response. The higher levels of PI3K prevent TLR4 deficient mice from the stress-induced immune response. Therefore, stress modulates the immune system through TLR4-mediated PI3K/Akt signaling.


Neuroscience Letters | 2011

Essential role of toll-like receptor 2 in morphine-induced microglia activation in mice

Yi Zhang; Hui Li; Yi Li; Xiuli Sun; Meng-Yang Zhu; Gregory Hanley; Gene LeSage; Deling Yin

Opioids are powerful pain relievers, but also potent inducers of dependence and tolerance. Chronic morphine administration (via subcutaneous pellet) induces morphine dependence in the nucleus accumbens, an important dependence region in the brain, yet the cellular mechanisms are mostly unknown. Toll-like receptor 2 (TLR2) plays an essential function in controlling innate and inflammatory responses. Using a knockout mouse lacking TLR2, we assessed the contribution of TLR2 to microglia activation and development of morphine dependence. We report here that mice deficient in TLR2 inhibit morphine-induced the levels of microglia activation and proinflammatory cytokines. Moreover, in TLR2 knockout mice the main symptoms of morphine withdrawal were significantly attenuated. Our data reveal that TLR2 plays a critical role in morphine-induced microglia activation and dependence.


Biochemical and Biophysical Research Communications | 2015

Palmitate promotes autophagy and apoptosis through ROS-dependent JNK and p38 MAPK.

Jing Liu; Fen Chang; Fang Li; Hui Fu; Jinlan Wang; Shangli Zhang; Jing Zhao; Deling Yin

Palmitate (PA), one of the most prevalent saturated fatty acids, causes myocardial dysfunction. However, the mechanisms by which PA induces cell apoptosis and autophagy remain to be elucidated. We showed that autophagy was induced in an mTORC1-dependent way and played a protective role against PA-induced apoptosis, which was verified by pretreatment with 3-methyladenine (3MA) and rapamycin. However, p62 began to accumulate after 18 h treatment with PA, suggesting prolonged exposure to PA lead to an impairment of autophagic flux. PA enhanced ROS production as well as activated p38-mitogen-activated protein kinase (p38 MAPK) and c-jun NH2 terminal kinases (JNKs). The antioxidant N-Acety-l-Cysteine (NAC) was found to attenuate the JNK and p38 MAPK activation with a concomitant reduction of PA-induced autophagy and apoptosis. Furthermore, both JNK and p38 MAPK inhibitors were shown to directly abrogate caspase 7 cleavage as well as the conversion of LC3BI to LC3BII. Thus, we demonstrate that PA stimulates autophagy and apoptosis via ROS-dependent JNK and p38 MAPK pathways.


Biochemical and Biophysical Research Communications | 2009

Morphine promotes apoptosis via TLR2, and this is negatively regulated by β-arrestin 2

Yi Li; Xiuli Sun; Yi Zhang; JingJing Huang; Gregory Hanley; Kenneth E. Ferslew; Ying Peng; Deling Yin

We have previously reported that morphine induces apoptosis. However, the underlying molecular mechanisms remain to be elucidated. Toll-like receptor 2 (TLR2), a key immune receptor in the TLR family, modulates cell survival and cell death in various systems. Evidence indicates that beta-arrestin 2 acts as a negative regulator of innate immune activation by TLRs. Here, we investigated the roles of TLR2, the downstreaming mediator MyD88, and beta-arrestin 2 in morphine-induced apoptosis. We showed that overexpression of TLR2 in HEK293 cells caused a significant increase in apoptosis after morphine treatment. Inhibition of MyD88 by transfecting dominant negative MyD88 or overexpression of beta-arrestin 2 by transfecting beta-arrestin 2 full length plasmid in TLR2 overexpressing HEK293 cells attenuated morphine-induced apoptosis. Our study thus demonstrates that TLR2 signaling mediates the morphine-induced apoptosis, and beta-arrestin 2 is a negative regulator in morphine-induced, TLR2-mediated apoptosis.


Journal of Neuroimmunology | 2008

Toll-like receptor 4 mediates chronic restraint stress-induced immune suppression

Yi Zhang; Michael L. Woodruff; Ying Zhang; Jun-Ying Miao; Gregory Hanley; Charles A. Stuart; Xiao Zeng; Savita Prabhakar; Jonathan P. Moorman; Bao-Xiang Zhao; Deling Yin

Stress, either physical or psychological, can have a dramatic impact on the immune system. Little progress, however, has been made in understanding stress-induced immune suppression. We report here that mice subjected to chronic 12-hour daily physical restraint for two days significantly increased the expression of Toll-like receptor 4 (TLR4). Interestingly, TLR4-deficient mice are resistant to stress-induced lymphocyte reduction. In addition, restraint stress caused dramatic decrease in T help 1 (Th1) cytokine IFN-gamma and IL-2 levels but increase in Th2 cytokine IL-4 in wild type mice. Moreover, the restraint stress significantly inhibits changes of Th1 and Th2 cytokines in TLR4-deficient mice compared with the wild type mice. Therefore, stress modulates the immune system through a TLR4-dependent mechanism.


Neuroscience Letters | 2010

The role of p38 MAPK in valproic acid induced microglia apoptosis

Nanchang Xie; Cui Wang; Youting Lin; Hui Li; Lin Chen; Tongxia Zhang; Yong Sun; Yi Zhang; Deling Yin; Zhaofu Chi

Valproic acid (VPA), a widely prescribed drug for seizures and bipolar disorder, induces apoptosis in microglia, but the underlying mechanism by which microglia apoptosis in response to VPA is not yet known. In this study, we found that the mitochondrial pathway played an important role in VPA-induced apoptosis in both BV-2 microglia and mouse primary microglial cells. In addition, VPA increased the level of phospho-p38 mitogen-activated protein kinase (MAPK), but had no effects on phospho-ERK and phospho-JNK MAPKs. Moreover, p38 inhibitor SB203580 strongly inhibited VPA-induced apoptosis and caspase-3 activation. Taken together, our results clearly demonstrated that VPA could induce apoptosis of microglia via p38 MAPK and mitochondrial apoptosis pathway.


European Journal of Cancer | 2014

Hepatitis B virus X protein promotes hepatocellular carcinoma transformation through interleukin-6 activation of microRNA-21 expression

Chi Han Li; Feiyue Xu; Sheungching Chow; Lu Feng; Deling Yin; Tzi Bun Ng; Yangchao Chen

Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and chronic hepatitis B virus (HBV) infection is the major risk factor of HCC. The virus encodes HBV X (HBx) protein that plays a critical role in the development of HCC. Studies have revealed numerous HBx-altered genes and signalling pathways that heavily contribute to tumourigenesis of non-tumour hepatocytes. However, the role of HBx in regulating other critical gene regulators such as microRNAs is poorly understood, which impedes the exploration of a complete HBx-associated carcinogenic network. Besides, critical microRNAs that drive the transformation of non-tumour hepatocytes are yet to be identified. Here, we overexpressed C-terminal truncated HBx protein in a non-tumour hepatocyte cell line MIHA, and measured a panel of cancer-associated miRNAs. We observed that oncogenic miR-21 was upregulated upon ectopic expression of this viral protein variant. HBx-miR-21 pathway was prevalent in HCC cells as inhibition of HBx in Hep3B and PLC/PRF/5 cells significantly suppressed miR-21 expression. Subsequently, we showed that the upregulation of miR-21 was mediated by HBx-induced interleukin-6 pathway followed by activation of STAT3 transcriptional factor. The high dependency of miR-21 expression to HBx protein suggested a unique viral oncogenic pathway that could aberrantly affect a network of gene expression. Importantly, miR-21 was essential in the HBx-induced transformation of non-tumour hepatocytes. Inhibition of miR-21 effectively attenuated anchorage-independent colony formation and subcutaneous tumour growth of MIHA cells. Our study suggested that overexpression of miR-21 was critical to promote early carcinogenesis of hepatocytes upon HBV infection.

Collaboration


Dive into the Deling Yin's collaboration.

Top Co-Authors

Avatar

Hui Li

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles A. Stuart

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

Yi Zhang

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

Gene LeSage

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

Yi Caudle

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

Gregory Hanley

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Zhang

Johns Hopkins University

View shared research outputs
Researchain Logo
Decentralizing Knowledge