Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Delphine Boucher is active.

Publication


Featured researches published by Delphine Boucher.


Applied and Environmental Microbiology | 2006

Succession and regulation factors of small eukaryote community composition in a lacustrine ecosystem (Lake Pavin)

Cécile Lepère; Delphine Boucher; Ludwig Jardillier; Isabelle Domaizon; Didier Debroas

ABSTRACT The structure and dynamics of small eukaryotes (cells with a diameter less than 5 μm) were studied over two consecutive years in an oligomesotrophic lake (Lake Pavin in France). Water samples were collected at 5 and 30 m below the surface; when the lake was stratified, these depths corresponded to the epilimnion and hypolimnion. Changes in small-eukaryote structure were analyzed using terminal restriction fragment length polymorphism (T-RFLP) and cloning and sequencing of the 18S rRNA genes. Terminal restriction fragments from clones were used to reveal the dominant taxa in T-RFLP profiles of the environmental samples. Spumella-like cells (Chrysophyceae) did not dominate the small eukaryote community identified by molecular techniques in lacustrine ecosystems. Small eukaryotes appeared to be dominated by heterotrophic cells, particularly Cercozoa, which represented nearly half of the identified phylotypes, followed by the Fungi-LKM11 group (25%), choanoflagellates (10.3%) and Chrysophyceae (8.9%). Bicosoecida, Cryptophyta, and ciliates represented less than 9% of the community studied. No seasonal reproducibility in temporal evolution of the small-eukaryote community was observed from 1 year to the next. The T-RFLP patterns were related to bottom-up (resources) and top-down (grazing) variables using canonical correspondence analysis. The results showed a strong top-down regulation of small eukaryotes by zooplankton, more exactly, by cladocerans at 5 m and copepods at 30 m. Among bottom-up factors, temperature had a significant effect at both depths. The concentrations of nitrogenous nutrients and total phosphorus also had an effect on small-eukaryote dynamics at 5 m, whereas bacterial abundance and dissolved oxygen played a more important structuring role in the deeper zone.


FEMS Microbiology Ecology | 2010

Bacterial community changes during bioremediation of aliphatic hydrocarbon-contaminated soil

Cécile Militon; Delphine Boucher; Cédric Vachelard; Geoffrey Perchet; Vincent Barra; Julien Troquet; Eric Peyretaillade; Pierre Peyret

The microbial community response during the oxygen biostimulation process of aged oil-polluted soils is poorly documented and there is no reference for the long-term monitoring of the unsaturated zone. To assess the potential effect of air supply on hydrocarbon fate and microbial community structure, two treatments (0 and 0.056 mol h⁻¹ molar flow rate of oxygen) were performed in fixed bed reactors containing oil-polluted soil. Microbial activity was monitored continuously over 2 years throughout the oxygen biostimulation process. Microbial community structure before and after treatment for 12 and 24 months was determined using a dual rRNA/rRNA gene approach, allowing us to characterize bacteria that were presumably metabolically active and therefore responsible for the functionality of the community in this polluted soil. Clone library analysis revealed that the microbial community contained many rare phylotypes. These have never been observed in other studied ecosystems. The bacterial community shifted from Gammaproteobacteria to Actinobacteria during the treatment. Without aeration, the samples were dominated by a phylotype linked to the Streptomyces. Members belonging to eight dominant phylotypes were well adapted to the aeration process. Aeration stimulated an Actinobacteria phylotype that might be involved in restoring the ecosystem studied. Phylogenetic analyses suggested that this phylotype is a novel, deep-branching member of the Actinobacteria related to the well-studied genus Acidimicrobium.


Microbial Ecology | 2005

Phage Bacteriolysis, Protistan Bacterivory Potential, and Bacterial Production in a Freshwater Reservoir: Coupling with Temperature

A. S. Pradeep Ram; Delphine Boucher; Télesphore Sime-Ngando; Didier Debroas; J.C. Romagoux

Phage abundance and infection of bacterioplankton were studied from March to November 2003 in the Sep Reservoir (Massif Central, France), together with temperature, chlorophyll, bacteria (abundance and production), and heterotrophic nanoflagellates (abundance and potential bacterivory). Virus abundance (VA) ranged from 0.6 to 13 × 1010 viruses l−1, exceeding bacterial abundance (BA) approximately sixfold on average. In terms of carbon, viruses corresponded to up to 25% of bacterial biomass. A multiple regression model indicated that BA was the best predictor for VA (R2 = 0.75). The frequency of infected bacteria (estimated from the percentage of visibly infected cells) varied from 1% to 32% and was best explained by a combination of temperature (R2 = 0.20) and bacterial production (R2 = 0.25). Viruses and flagellates contributed about equally to bacterial mortality. Both factors destroyed 55% of bacterial production, with a shift from phage bacteriolysis in early spring to protistan bacterivory in late summer. The vertical differences in most of the biological variables were not significant, contrasting with the seasonal differences (i.e., spring vs. summer-autumn). All biological variables under study were indeed significantly coupled to temperature. We regarded this to be the consequence of the enhanced discharge of the reservoir in 2003 (compared to previous years). This substantially weakened the stability and the thermal inertia of the water column, thereby establishing temperature as a stronger forcing factor in setting the conditions for optimal metabolic activity of microbial communities.


DNA Research | 2013

Gene Capture Coupled to High-Throughput Sequencing as a Strategy for Targeted Metagenome Exploration

Jérémie Denonfoux; Nicolas Parisot; Eric Dugat-Bony; Corinne Biderre-Petit; Delphine Boucher; D. P. Morgavi; Denis Le Paslier; Eric Peyretaillade; Pierre Peyret

Next-generation sequencing (NGS) allows faster acquisition of metagenomic data, but complete exploration of complex ecosystems is hindered by the extraordinary diversity of microorganisms. To reduce the environmental complexity, we created an innovative solution hybrid selection (SHS) method that is combined with NGS to characterize large DNA fragments harbouring biomarkers of interest. The quality of enrichment was evaluated after fragments containing the methyl coenzyme M reductase subunit A gene (mcrA), the biomarker of methanogenesis, were captured from a Methanosarcina strain and a metagenomic sample from a meromictic lake. The methanogen diversity was compared with direct metagenome and mcrA-based amplicon pyrosequencing strategies. The SHS approach resulted in the capture of DNA fragments up to 2.5 kb with an enrichment efficiency between 41 and 100%, depending on the sample complexity. Compared with direct metagenome and amplicons sequencing, SHS detected broader mcrA diversity, and it allowed efficient sampling of the rare biosphere and unknown sequences. In contrast to amplicon-based strategies, SHS is less biased and GC independent, and it recovered complete biomarker sequences in addition to conserved regions. Because this method can also isolate the regions flanking the target sequences, it could facilitate operon reconstructions.


FEMS Microbiology Ecology | 2013

Geographic distance and ecosystem size determine the distribution of smallest protists in lacustrine ecosystems

Cécile Lepère; Isabelle Domaizon; Najwa Taib; Jean-François Mangot; Gisèle Bronner; Delphine Boucher; Didier Debroas

Understanding the spatial distribution of aquatic microbial diversity and the underlying mechanisms causing differences in community composition is a challenging and central goal for ecologists. Recent insights into protistan diversity and ecology are increasing the debate over their spatial distribution. In this study, we investigate the importance of spatial and environmental factors in shaping the small protists community structure in lakes. We analyzed small protists community composition (beta-diversity) and richness (alpha-diversity) at regional scale by different molecular methods targeting the gene coding for 18S rRNA gene (T-RFLP and 454 pyrosequencing). Our results show a distance-decay pattern for rare and dominant taxa and the spatial distribution of the latter followed the prediction of the island biogeography theory. Furthermore, geographic distances between lakes seem to be the main force shaping the protists community composition in the lakes studied here. Finally, the spatial distribution of protists was discussed at the global scale (11 worldwide distributed lakes) by comparing these results with those present in the public database. UniFrac analysis showed 18S rRNA gene OTUs compositions significantly different among most of lakes, and this difference does not seem to be related to the trophic status.


Microbial Ecology | 2011

Identification of Sulfur-Cycle Prokaryotes in a Low-Sulfate Lake (Lake Pavin) Using aprA and 16S rRNA Gene Markers

Corinne Biderre-Petit; Delphine Boucher; Jan Kuever; Patrick Albéric; Didier Jézéquel; Brigitte Chebance; Guillaume Borrel; Gérard Fonty; Pierre Peyret

Geochemical researches at Lake Pavin, a low-sulfate-containing freshwater lake, suggest that the dominant biogeochemical processes are iron and sulfate reduction, and methanogenesis. Although the sulfur cycle is one of the main active element cycles in this lake, little is known about the sulfate-reducer and sulfur-oxidizing bacteria. The aim of this study was to assess the vertical distribution of these microbes and their diversities and to test the hypothesis suggesting that only few SRP populations are involved in dissimilatory sulfate reduction and that Epsilonproteobacteria are the likely key players in the oxidative phase of sulfur cycle by using a PCR aprA gene-based approach in comparison with a 16S rRNA gene-based analysis. The results support this hypothesis. Finally, this preliminary work points strongly the likelihood of novel metabolic processes upon the availability of sulfate and other electron acceptors.


Microbial Biotechnology | 2012

In situ TCE degradation mediated by complex dehalorespiring communities during biostimulation processes

Eric Dugat-Bony; Corinne Biderre-Petit; Faouzi Jaziri; Maude M. David; Jérémie Denonfoux; Delina Lyon; Jean-Yves Richard; Cyrille Curvers; Delphine Boucher; Timothy M. Vogel; Eric Peyretaillade; Pierre Peyret

The bioremediation of chloroethene contaminants in groundwater polluted systems is still a serious environmental challenge. Many previous studies have shown that cooperation of several dechlorinators is crucial for complete dechlorination of trichloroethene to ethene. In the present study, we used an explorative functional DNA microarray (DechloArray) to examine the composition of specific functional genes in groundwater samples in which chloroethene bioremediation was enhanced by delivery of hydrogen‐releasing compounds. Our results demonstrate for the first time that complete biodegradation occurs through spatial and temporal variations of a wide diversity of dehalorespiring populations involving both Sulfurospirillum, Dehalobacter, Desulfitobacterium, Geobacter and Dehalococcoides genera. Sulfurospirillum appears to be the most active in the highly contaminated source zone, while Geobacter was only detected in the slightly contaminated downstream zone. The concomitant detection of both bvcA and vcrA genes suggests that at least two different Dehalococcoides species are probably responsible for the dechlorination of dichloroethenes and vinyl chloride to ethene. These species were not detected on sites where cis‐dichloroethene accumulation was observed. These results support the notion that monitoring dechlorinators by the presence of specific functional biomarkers using a powerful tool such as DechloArray will be useful for surveying the efficiency of bioremediation strategies.


Scientific Reports | 2016

Oral exposure to environmental pollutant benzo[a]pyrene impacts the intestinal epithelium and induces gut microbial shifts in murine model.

Céline Ribière; Pierre Peyret; Nicolas Parisot; Claude Darcha; Pierre Déchelotte; Nicolas Barnich; Eric Peyretaillade; Delphine Boucher

Gut microbiota dysbiosis are associated with a wide range of human diseases, including inflammatory bowel diseases. The physiopathology of these diseases has multifactorial aetiology in which environmental factors, particularly pollution could play a crucial role. Among the different pollutants listed, Polycyclic Aromatic Hydrocarbons (PAHs) are subject to increased monitoring due to their wide distribution and high toxicity on Humans. Here, we used 16S rRNA gene sequencing to investigate the impact of benzo[a]pyrene (BaP, most toxic PAH) oral exposure on the faecal and intestinal mucosa-associated bacteria in C57BL/6 mice. Intestinal inflammation was also evaluated by histological observations. BaP oral exposure significantly altered the composition and the abundance of the gut microbiota and led to moderate inflammation in ileal and colonic mucosa. More severe lesions were observed in ileal segment. Shifts in gut microbiota associated with moderate inflammatory signs in intestinal mucosa would suggest the establishment of a pro-inflammatory intestinal environment following BaP oral exposure. Therefore, under conditions of genetic susceptibility and in association with other environmental factors, exposure to this pollutant could trigger and/or accelerate the development of inflammatory pathologies.


FEMS Microbiology Ecology | 2009

Impact of environmental factors on couplings between bacterial community composition and ectoenzymatic activities in a lacustrine ecosystem.

Delphine Boucher; Didier Debroas

This study examined the effects of temporal changes in bacterial community composition (BCC) and environmental factors on potential ectoenzymatic activities (alpha-glucosidase, beta-glucosidase, alkaline phosphatase and leucine aminopeptidase) in a lacustrine ecosystem (Sep reservoir, France). BCC was assessed by terminal restriction fragment length polymorphism. Physical parameters, and inorganic and organic nutrient concentrations (dissolved carbohydrates and proteins) were measured in lakes and tributaries. According to the multivariate statistics (redundancy analysis), physical and chemical factors explained the largest part of leucine aminopeptidase activity, whereas the temporal changes of other ectoenzymatic activities were partly dependent on the variations in the BCC. In particular, the occurrence of occasional bacterial populations seemed to explain a lot of the variation in rates and patterns of polymer hydrolysis. The relation observed in this study between the bacterial structure and activity is discussed within the framework of biodiversity-ecosystem functioning.


Research in Microbiology | 2015

Capturing prokaryotic dark matter genomes

Cyrielle Gasc; Céline Ribière; Nicolas Parisot; Réjane Beugnot; Clémence Defois; Corinne Petit-Biderre; Delphine Boucher; Eric Peyretaillade; Pierre Peyret

Prokaryotes are the most diverse and abundant cellular life forms on Earth. Most of them, identified by indirect molecular approaches, belong to microbial dark matter. The advent of metagenomic and single-cell genomic approaches has highlighted the metabolic capabilities of numerous members of this dark matter through genome reconstruction. Thus, linking functions back to the species has revolutionized our understanding of how ecosystem function is sustained by the microbial world. This review will present discoveries acquired through the illumination of prokaryotic dark matter genomes by these innovative approaches.

Collaboration


Dive into the Delphine Boucher's collaboration.

Top Co-Authors

Avatar

Pierre Peyret

Blaise Pascal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Didier Debroas

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cyrielle Gasc

Blaise Pascal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Faouzi Jaziri

Blaise Pascal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge