Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Delphine Burel is active.

Publication


Featured researches published by Delphine Burel.


Pharmacological Reviews | 2009

Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery.

David Vaudry; Anthony Falluel-Morel; Steve Bourgault; Magali Basille; Delphine Burel; Olivier Wurtz; Alain Fournier; Billy K. C. Chow; Hitoshi Hashimoto; Ludovic Galas; Hubert Vaudry

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 38-amino acid C-terminally α-amidated peptide that was first isolated 20 years ago from an ovine hypothalamic extract on the basis of its ability to stimulate cAMP formation in anterior pituitary cells (Miyata et al., 1989. PACAP belongs to the vasoactive intestinal polypeptide (VIP)-secretin-growth hormone-releasing hormone-glucagon superfamily. The sequence of PACAP has been remarkably well conserved during evolution from protochordates to mammals, suggesting that PACAP is involved in the regulation of important biological functions. PACAP is widely distributed in the brain and peripheral organs, notably in the endocrine pancreas, gonads, respiratory and urogenital tracts. Characterization of the PACAP precursor has revealed the existence of a PACAP-related peptide, the activity of which remains unknown. Two types of PACAP binding sites have been characterized: type I binding sites exhibit a high affinity for PACAP and a much lower affinity for VIP, whereas type II binding sites have similar affinity for PACAP and VIP. Molecular cloning of PACAP receptors has shown the existence of three distinct receptor subtypes: the PACAP-specific PAC1-R, which is coupled to several transduction systems, and the PACAP/VIP-indifferent VPAC1-R and VPAC2-R, which are primarily coupled to adenylyl cyclase. PAC1-Rs are particularly abundant in the brain, the pituitary and the adrenal gland, whereas VPAC receptors are expressed mainly in lung, liver, and testis. The development of transgenic animal models and specific PACAP receptor ligands has strongly contributed to deciphering the various actions of PACAP. Consistent with the wide distribution of PACAP and its receptors, the peptide has now been shown to exert a large array of pharmacological effects and biological functions. The present report reviews the current knowledge concerning the pleiotropic actions of PACAP and discusses its possible use for future therapeutic applications.


Peptides | 2007

Neurotrophic effects of PACAP in the cerebellar cortex

Béatrice Botia; Magali Basille; Aurélie Allais; Emilie Raoult; Anthony Falluel-Morel; Ludovic Galas; Valérie Jolivel; Olivier Wurtz; Hitoshi Komuro; Alain Fournier; Hubert Vaudry; Delphine Burel; Bruno J. Gonzalez; David Vaudry

In the rodent cerebellum, PACAP is expressed by Purkinje neurons and PAC1 receptors are present on granule cells during both the development period and in adulthood. Treatment of granule neurons with PACAP inhibits proliferation, slows migration, promotes survival and induces differentiation. PACAP also protects cerebellar granule cells against the deleterious effects of neurotoxic agents. Most of the neurotrophic effects of PACAP are mediated through the cAMP/PKA signaling pathway and often involve the ERK MAPkinase. Caspase-3 is one of the key enzymes implicated in the neuroprotective action of PACAP but PACAP also inhibits caspase-9 activity and increases Bcl-2 expression. PACAP and functional PAC1 receptors are expressed in the monkey and human cerebellar cortex with a pattern of expression very similar to that described in rodents, suggesting that PACAP could also exert neurodevelopmental and neuroprotective functions in the cerebellum of primates including human.


SpringerPlus | 2015

Characterization of neuropeptides which control cerebellar granule cell survival, migration and differentiation

David Vaudry; Auriane Corbière; M. Basille; Seyma Bahdoudi; Olfa Masmoudi; Jérôme Leprince; Delphine Burel; Magalie Bénard; Ludovic Galas

During cerebellar development, granule cell precursors are produced from a secondary germinative zone forming the external granule cell layer (EGL). Immature granule neurons from the inner part of the EGL then start a tangential migration followed by a centripetal inward radial migration across the molecular and Purkinje cell layers to reach their final destination at the bottom of the forming internal granule cell layer (IGL). This complex migratory process is highly regulated and takes about 2 days in rodents and it is essential for the proper formation of the cortical layers forming the mature cerebellum. In the IGL, granule cells differentiate to establish functional excitatory synapses with GABAergic neurons including Purkinje, basket, stellate and Golgi cells, or die. Some neurotrophins and neurotransmitters have been shown to be involved in the control of cerebellar granule cell survival, migration and differentiation. Initially, when I started my carrier as a researcher, we used to claim that very few neuropeptides were produced in the cerebellum. Nevertheless, we now know that this was wrong as we have recently identified by mass spectrometry over 70 peptides expressed in the cerebellum during development. Over the years, the involvement of some of these peptides such as somatostatin, PACAP or ODN, has been established in the control of cerebellar granule cell survival, migration and differentiation as will illustrate my presentation.


Frontiers in Endocrinology | 2012

Regulation of neurosteroid biosynthesis by neurotransmitters and neuropeptides

Jean Luc Do Rego; Jae Young Seong; Delphine Burel; Jérôme Leprince; David Vaudry; Van Luu-The; Marie Christine Tonon; Kazuyoshi Tsutsui; Georges Pelletier; Hubert Vaudry

The enzymatic pathways leading to the synthesis of bioactive steroids in the brain are now almost completely elucidated in various groups of vertebrates and, during the last decade, the neuronal mechanisms involved in the regulation of neurosteroid production have received increasing attention. This report reviews the current knowledge concerning the effects of neurotransmitters, peptide hormones, and neuropeptides on the biosynthesis of neurosteroids. Anatomical studies have been carried out to visualize the neurotransmitter- or neuropeptide-containing fibers contacting steroid-synthesizing neurons as well as the neurotransmitter, peptide hormones, or neuropeptide receptors expressed in these neurons. Biochemical experiments have been conducted to investigate the effects of neurotransmitters, peptide hormones, or neuropeptides on neurosteroid biosynthesis, and to characterize the type of receptors involved. Thus, it has been found that glutamate, acting through kainate and/or AMPA receptors, rapidly inactivates P450arom, and that melatonin produced by the pineal gland and eye inhibits the biosynthesis of 7α-hydroxypregnenolone (7α-OH-Δ5P), while prolactin produced by the adenohypophysis enhances the formation of 7α-OH-Δ5P. It has also been demonstrated that the biosynthesis of neurosteroids is inhibited by GABA, acting through GABAA receptors, and neuropeptide Y, acting through Y1 receptors. In contrast, it has been shown that the octadecaneuropetide ODN, acting through central-type benzodiazepine receptors, the triakontatetraneuropeptide TTN, acting though peripheral-type benzodiazepine receptors, and vasotocin, acting through V1a-like receptors, stimulate the production of neurosteroids. Since neurosteroids are implicated in the control of various neurophysiological and behavioral processes, these data suggest that some of the neurophysiological effects exerted by neurotransmitters and neuropeptides may be mediated via the regulation of neurosteroid production.


Neurotoxicity Research | 2011

Neuroprotective Effects of PACAP Against Ethanol-Induced Toxicity in the Developing Rat Cerebellum

Béatrice Botia; Valérie Jolivel; Delphine Burel; Vadim Le Joncour; Vincent Roy; Mickaël Naassila; Magalie Bénard; Alain Fournier; Hubert Vaudry; David Vaudry

The developing rat cerebellum is particularly sensitive to alcohol at the end of the first postnatal week, a period of intense neurogenesis. The neuropeptide Pituitary adenylate cyclase-activating polypeptide (PACAP) has previously been shown to prevent the death of cultured neurons in vitro. We have thus investigated the capacity of PACAP to counteract ethanol toxicity in 8-day-old rats. Behavioral studies revealed that PACAP reduces the deleterious action of alcohol in the negative geotaxis test. Administration of ethanol induced a transient increase of the expression of pro-apoptotic genes including c-jun or caspase-3, which could be partially blocked by PACAP. Alcohol inhibited the expression of the α6 GABAA subunit while PACAP increased neuroD2 mRNA level, two markers of neuronal differentiation. Although gene regulations occurred rapidly, a third injection of ethanol was required to strongly reduce the number of granule cells in the internal granule cell layer, an effect which was totally blocked by PACAP. The action of PACAP was mimicked by D-JNKi1 and Z-VAD-FMK, indicating the involvement of the jun and caspase-3 pathways in alcohol toxicity. The present data demonstrate that PACAP can counteract in vivo the deleterious effect of ethanol. The beneficial action of PACAP on locomotor activity precedes its activity on cell survival, indicating that PACAP can block the detrimental action of ethanol on cell differentiation.


Annals of the New York Academy of Sciences | 2009

Steroid biosynthesis within the frog brain: A model of neuroendocrine regulation

Jean Luc Do Rego; Jae Young Seong; Delphine Burel; Van Luu-The; Dan Larhammar; Kazuyoshi Tsutsui; Georges Pelletier; Marie Christine Tonon; Hubert Vaudry

There is now clear evidence that the brain, similar to the adrenal gland, gonads, and placenta, is a steroidogenic organ. Notably in the frog brain, the presence of various steroidogenic enzymes has been detected by immunohistochemistry in specific populations of neurons and/or glial cells. These steroidogenic enzymes are biologically active, as shown by the ability of brain tissue explants to convert [3H]pregnenolone into various radiolabeled steroids. The frog brain has also been extensively used as a model to study the mechanism of regulation of neurosteroidogenesis by neurotransmitters and neuropeptides. It has been demonstrated that the biosynthesis of neurosteroids is inhibited by γ‐aminobutyric acid (GABA), acting through GABAA receptors, and neuropeptide Y, acting through Y1 receptors, and is stimulated by the octadecaneuropeptide (ODN), acting through central‐type benzodiazepine receptors, triakontatetraneuropeptide (TTN), acting through peripheral‐type benzodiazepine receptors, and vasotocin, acting through V1a‐like receptors. These data indicate that some of the neurophysiological effects of neurotransmitters and neuropeptides may be mediated through modulation of neurosteroid biosynthesis.


Journal of Molecular Neuroscience | 2008

Interactions of PACAP and Ceramides in the Control of Granule Cell Apoptosis During Cerebellar Development

Anthony Falluel-Morel; Nicolas Aubert; David Vaudry; Arnaud Desfeux; Aurélie Allais; Delphine Burel; M. Basille; Hubert Vaudry; Vincent Laudenbach; Bruno J. Gonzalez

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that belongs to the secretin/glucagon/vasoactive intestinal polypeptide superfamily. The PACAPergic system is actively expressed in the developing cerebellum of mammals. In particular, PACAP receptors are expressed by granule cell precursors suggesting a role of the peptide in neurogenesis of this cell type. Consistent with this hypothesis, several studies reported antiapoptotic effects of PACAP in the developing cerebellum. On the other hand, the sphingomyelin metabolites ceramides are recognized as important signaling molecules that play pivotal roles during neuronal development. Ceramides, which production can be induced by death factors such as FasL or TNFalpha, are involved in the control of cell survival during brain development through activation of caspase-dependent mechanisms. The present review focuses on the interactions between PACAP and ceramides in the control of granule cell survival and on the transduction mechanisms associated with the anti- and proapoptotic effects of PACAP and ceramides, respectively.


Journal of Neurochemistry | 2010

Balanced effect of PACAP and FasL on granule cell death during cerebellar development: a morphological, functional and behavioural characterization

Aurélie Allais; Delphine Burel; Vincent Roy; Sébastien Arthaud; Ludovic Galas; Emma R. Isaac; Arnaud Desfeux; Bénédicte Parent; Alain Fournier; Pierre Chapillon; Nancy M. Sherwood; Hubert Vaudry; Bruno J. Gonzalez

J. Neurochem. (2010) 113, 329–340.


Frontiers in Endocrinology | 2011

Neurosteroid biosynthesis in the brain of amphibians.

Hubert Vaudry; Jean Luc Do Rego; Delphine Burel; Van Luu-The; Georges Pelletier; David Vaudry; Kazuyoshi Tsutsui

Amphibians have been widely used to investigate the synthesis of biologically active steroids in the brain and the regulation of neurosteroid production by neurotransmitters and neuropeptides. The aim of the present review is to summarize the current knowledge regarding the neuroanatomical distribution and biochemical activity of steroidogenic enzymes in the brain of anurans and urodeles. The data accumulated over the past two decades demonstrate that discrete populations of neurons and/or glial cells in the frog and newt brains express the major steroidogenic enzymes and are able to synthesize de novo a number of neurosteroids from cholesterol/pregnenolone. Since neurosteroidogenesis has been conserved during evolution from amphibians to mammals, it appears that neurosteroids must play important physiological functions in the central nervous system of vertebrates.


Experimental Neurology | 2013

Spatio-temporal characterization of the pleiotrophinergic system in mouse cerebellum: evidence for its key role during ontogenesis.

Magali Basille-Dugay; Magda M. Hamza; Céline Tassery; Bénédicte Parent; Emilie Raoult; Magalie Bénard; Rita Raisman-Vozari; David Vaudry; Delphine Burel

The development of the central nervous system requires an appropriate micro-environment that is conditioned by a combination of various extracellular components. Most of the known signaling factors, such as neurotransmitters or neuropeptides, are soluble and diffuse into the extracellular matrix. However, other secreted molecules like proteoglycans or glycosaminoglycans anchor in the extracellular matrix to influence cerebral ontogenesis. As such, pleiotrophin (PTN), which binds the proteoglycans syndecan-3 (SDC3) and protein tyrosine phosphatase zeta (PTPζ), has been described as a pro-migratory and a pro-differentiating secreted cytokine on cortical neurons. In rat cerebellum, PTN is highly expressed during the first postnatal week, suggesting that this cytokine could participate to the development of the cerebellar cortex. According to this hypothesis, our spatio-temporal cartography of PTN, PTPζ and SDC3 indicated that, in mouse, the PTNergic system was present in the cerebellum at least from the first postnatal day (P0). Until P12, PTN was mainly expressed by granule cell precursors and located in the extracellular matrix, while SDC3 was expressed by Purkinje cells, Golgi cells and granule cell precursors, and PTPζ was present on Purkinje cells and Bergmann fibers. In vitro studies confirmed the presence of SDC3 on immature granule cells and demonstrated that PTN could stimulate directly their velocity in culture. In contrast, subarachnoidal injection of PTN in the cerebellum significantly reduced the rate of migration of granule cells, exacerbated their apoptosis and induced an atrophy of the Purkinje cell dendritic tree. Since differentiated granule cells did not express SDC3 or PTPζ, the PTN effect observed on migration and apoptosis may be indirectly mediated by Purkinje and/or Bergmann cells. From P21 to adulthood, the distribution of PTN, SDC3 and PTPζ changed and their expression dramatically decreased even if they were still detectable. PTN and SDC3 immunolabeling was restricted around Purkinje cell bodies and Golgi cells, whereas PTPζ was located around interneurons. These data suggested that, in the cerebellum of adult mice, PTN participates to the perineuronal nets that control neuronal plasticity. To conclude, the present work represents the first spatio-temporal characterization of the PTNergic system in the mouse cerebellum and indicates that PTN may contribute to cerebellum ontogenesis during the postnatal development as well as to neuronal plasticity at adulthood.

Collaboration


Dive into the Delphine Burel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hubert Vaudry

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Alain Fournier

Institut national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Ludovic Galas

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge