Delphine Forge
University of Mons
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Delphine Forge.
Chemical Reviews | 2008
Sophie Laurent; Delphine Forge; Marc Port; Alain Roch; Caroline Robic; Luce Vander Elst; Robert N. Muller
1. Introduction 20642. Synthesis of Magnetic Nanoparticles 20662.1. Classical Synthesis by Coprecipitation 20662.2. Reactions in Constrained Environments 20682.3. Hydrothermal and High-TemperatureReactions20692.4. Sol-Gel Reactions 20702.5. Polyol Methods 20712.6. Flow Injection Syntheses 20712.7. Electrochemical Methods 20712.8. Aerosol/Vapor Methods 20712.9. Sonolysis 20723. Stabilization of Magnetic Particles 20723.1. Monomeric Stabilizers 20723.1.1. Carboxylates 20733.1.2. Phosphates 20733.2. Inorganic Materials 20733.2.1. Silica 20733.2.2. Gold 20743.3. Polymer Stabilizers 20743.3.1. Dextran 20743.3.2. Polyethylene Glycol (PEG) 20753.3.3. Polyvinyl Alcohol (PVA) 20753.3.4. Alginate 20753.3.5. Chitosan 20753.3.6. Other Polymers 20753.4. Other Strategies for Stabilization 20764. Methods of Vectorization of the Particles 20765. Structural and Physicochemical Characterization 20785.1. Size, Polydispersity, Shape, and SurfaceCharacterization20795.2. Structure of Ferro- or FerrimagneticNanoparticles20805.2.1. Ferro- and Ferrimagnetic Nanoparticles 20805.3. Use of Nanoparticles as Contrast Agents forMRI20825.3.1. High Anisotropy Model 20845.3.2. Small Crystal and Low Anisotropy EnergyLimit20855.3.3. Practical Interests of Magnetic NuclearRelaxation for the Characterization ofSuperparamagnetic Colloid20855.3.4. Relaxation of Agglomerated Systems 20856. Applications 20866.1. MRI: Cellular Labeling, Molecular Imaging(Inflammation, Apoptose, etc.)20866.2.
ACS Chemical Biology | 2011
Faustine Dubar; Timothy J. Egan; Bruno Pradines; David J. Kuter; Kanyile K. Ncokazi; Delphine Forge; Jean-François Paul; Christine Pierrot; Hadidjatou Kalamou; Jamal Khalife; Eric Buisine; Christophe Rogier; Hervé Vezin; Isabelle Forfar; Christian Slomianny; Xavier Trivelli; Sergey Kapishnikov; Leslie Leiserowitz; Daniel Dive; Christophe Biot
Inhibition of hemozoin biocrystallization is considered the main mechanism of action of 4-aminoquinoline antimalarials including chloroquine (CQ) but cannot fully explain the activity of ferroquine (FQ) which has been related to redox properties and intramolecular hydrogen bonding. Analogues of FQ, methylferroquine (Me-FQ), ruthenoquine (RQ), and methylruthenoquine (Me-RQ), were prepared. Combination of physicochemical and molecular modeling methods showed that FQ and RQ favor intramolecular hydrogen bonding between the 4-aminoquinoline NH group and the terminal amino group in the absence of water, suggesting that this structure may enhance its passage through the membrane. This was further supported by the use of Me-FQ and Me-RQ where the intramolecular hydrogen bond cannot be formed. Docking studies suggest that FQ can interact specifically with the {0,0,1} and {1,0,0} faces of hemozoin, blocking crystal growth. With respect to the structure-activity relationship, the antimalarial activity on 15 different P. falciparum strains showed that the activity of FQ and RQ were correlated with each other but not with CQ, confirming lack of cross resistance. Conversely, Me-FQ and Me-RQ showed significant cross-resistance with CQ. Mutations or copy number of pfcrt, pfmrp, pfmdr1, pfmdr2, or pfnhe-1 did not exhibit significant correlations with the IC(50) of FQ or RQ. We next showed that FQ and Me-FQ were able to generate hydroxyl radicals, whereas RQ and me-RQ did not. Ultrastructural studies revealed that FQ and Me-FQ but not RQ or Me-RQ break down the parasite digestive vacuole membrane, which could be related to the ability of the former to generate hydroxyl radicals.
Contrast Media & Molecular Imaging | 2009
Sébastien Boutry; Delphine Forge; Carmen Burtea; Isabelle Mahieu; Oltea Murariu; Sophie Laurent; Luce Vander Elst; Robert N. Muller
Iron oxide (nano)particles are powerful contrast agents for MRI and tags for magnetic cellular labeling. The need for quantitative methods to evaluate the iron content of contrast media solutions and biological matrixes is thus obvious. Several convenient methods aiming at the quantification of iron from iron oxide nanoparticle-containing samples are presented.
Chemical Biology & Drug Design | 2014
Raghu Raj; Christophe Biot; Séverine Carrère-Kremer; Laurent Kremer; Yann Guérardel; Jiri Gut; Philip J. Rosenthal; Delphine Forge; Vipan Kumar
A series of twenty piperazine‐tethered 7‐chloroquinoline–isatin hybrids have been synthesized via either direct nucleophilic substitution or Cu(Ι)Cl‐mediated Mannich reaction. These new conjugates were evaluated for their antimalarial and antitubercular efficacy against a chloroquine‐resistant strain of Plasmodium falciparum and Mycobacterium tuberculosis, respectively, while the cytotoxic profiles were evaluated against 3T6 cell line, a permanent mouse embryonic fibroblast cell line. The most potent of the test compound with IC50 of 0.22 μm against W2 strain of P. falciparum and 31.62 μm against the embryonic fibroblast cell line (cytotoxicity) displayed a high selective index of 143.73.
Journal of Medicinal Chemistry | 2012
Dominic Bastien; Maximilian C. C. J. C. Ebert; Delphine Forge; Jacynthe L. Toulouse; Natalia Kadnikova; Florent Perron; Annie Mayence; Tien L. Huang; Jean Jacques Vanden Eynde; Joelle N. Pelletier
The continuously increasing use of trimethoprim as a common antibiotic for medical use and for prophylactic application in terrestrial and aquatic animal farming has increased its prevalence in the environment. This has been accompanied by increased drug resistance, generally in the form of alterations in the drug target, dihydrofolate reductase (DHFR). The most highly resistant variants of DHFR are known as type II DHFR, among which R67 DHFR is the most broadly studied variant. We report the first attempt at designing specific inhibitors to this emerging drug target by fragment-based design. The detection of inhibition in R67 DHFR was accompanied by parallel monitoring of the human DHFR, as an assessment of compound selectivity. By those means, small aromatic molecules of 150-250 g/mol (fragments) inhibiting R67 DHFR selectively in the low millimolar range were identified. More complex, symmetrical bis-benzimidazoles and a bis-carboxyphenyl were then assayed as fragment-based leads, which procured selective inhibition of the target in the low micromolar range (K(i) = 2-4 μM). The putative mode of inhibition is discussed according to molecular modeling supported by in vitro tests.
European Journal of Medicinal Chemistry | 2012
Delphine Forge; Davie Cappoen; J. Laurent; Dimitri Stanicki; Annie Mayence; Tien Huang; Luc Verschaeve; Kris Huygen; J.J. Vanden Eynde
Despite progress in modern chemotherapy to combat tuberculosis, the causative pathogen Mycobacterium tuberculosis (M.tb.) is far from eradicated. Bacillary resistance to anti-mycobacterial agents, bacillary persistence and human immunodeficiency virus (HIV) co-infection hamper current drug treatment to completely cure the infection, generating a constant demand for novel drug candidates to tackle these problems. A small library of novel heterocyclic compounds was screened in a rapid luminometric in vitro assay against the laboratory M.tb. strain H37Rv. A group of amidines was found to have the highest potency and was further evaluated for acute toxicity against C3A hepatocytes. Next, the most promising compounds were evaluated for activity against a multi-drug resistant clinical isolate. The group of amidines was also tested for their ability to kill intracellular M.tb. residing in mouse J774A.1 macrophages. Finally, we report on a correlation between the structural differences of the compounds and their anti-mycobacterial activity.
Bioorganic & Medicinal Chemistry | 2015
S. Pomel; F. Dubar; Delphine Forge; Philippe M. Loiseau; C. Biot
Three new series of quinoline, quinolone, and benzimidazole derivatives were synthesized and evaluated in vitro against Trypanosoma brucei gambiense. In the quinoline series, the metallo antimalarial drug candidate (ferroquine, FQ) and its ruthenium analogue (ruthenoquine, RQ, compound 13) showed the highest in vitro activities with IC50 values around 0.1 μM. Unfortunately, both compounds failed to cure Trypanosoma brucei brucei infected mice in vivo. The other heterocyclic compounds were active in vitro with IC50 values varying from 0.8 to 34 μM. One of the most interesting results was a fluoroquinolone derivative (compound 2) that was able to offer a survival time of 8 days after a treatment at the single dose of 100 μmol/kg by intraperitoneal route. Although no clear-cut structure-activity relationships emerged, further pharmacomodulations are worth to be developed in this series.
Pharmaceuticals | 2013
Dimitri Stanicki; Muriel Pottier; Nausicaa Gantois; Claire Pinçon; Delphine Forge; Isabelle Mahieu; Sébastien Boutry; Jean Jacques Vanden Eynde; Anna Martinez; Eduardo Dei-Cas; El-Moukhtar Aliouat
Some compounds articulated around a piperazine or an ethylenediamine linker have been evaluated in vitro to determine their activity in the presence of a 3T6 fibroblast cell line and an axenic culture of Pneumocystis carinii, respectively. The most efficient antifungal derivatives, namely N,N′-bis(benzamidine-4-yl)ethane-1,2-diamine (compound 6, a diamidine) and N-(benzamidine-4-yl)-N′-phenylethane-1,2-diamine (compound 7, a monoamidine), exhibited no cytotoxicity and were evaluated in vivo in a rat model. Only the diamidine 6 emerged as a promising hit for further studies.
Journal of Molecular Modeling | 2012
Osvaldo A. Santos-Filho; Delphine Forge; Lucas V. B. Hoelz; Guilherme B. L. de Freitas; Thiago O. Marinho; Jocley Queiroz Araújo; Magaly Girão Albuquerque; Ricardo Bicca de Alencastro; Núbia Boechat
AbstractPneumocystis carinii is typically a non-pathogenic fungus found in the respiratory tract of healthy humans. However, it may cause P. carinii pneumonia (PCP) in people with immune deficiency, affecting mainly premature babies, cancer patients and transplant recipients, and people with acquired immunodeficiency syndrome (AIDS). In the latter group, PCP occurs in approximately 80% of patients, a major cause of death. Currently, there are many available therapies to treat PCP patients, including P. carinii dihydrofolate reductase (PcDHFR) inhibitors, such as trimetrexate (TMX), piritrexim (PTX), trimethoprim (TMP), and pyrimethamine (PMT). Nevertheless, the high percentage of adverse side effects and the limited therapeutic success of the current drug therapy justify the search for new drugs rationally planned against PCP. This work focuses on the study of pyrimidine inhibitors of PcDHFR, using both CoMFA and CoMSIA 3D-QSAR methods. FigureCoMFA/CoMSIA 3D-QSAR of pyrimidine inhibitors of Pneumocystis carinii dihydrofolate reductase
Journal of Physical Chemistry C | 2008
Delphine Forge; Alain Roch; Sophie Laurent; Horacio Tellez; Yves Gossuin; Fabian Renaux; Luce Vander Elst; Robert N. Muller