Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Delphine M. Lees is active.

Publication


Featured researches published by Delphine M. Lees.


Nature | 2001

Health: Endothelin-1 synthesis reduced by red wine

Roger Corder; Julie A. Douthwaite; Delphine M. Lees; Noorafza Q. Khan; Ana Carolina Viseu dos Santos; Elizabeth G. Wood; Martin J. Carrier

Statistical evidence of reduced coronary heart disease in areas of high wine consumption has led to the widespread belief that wine affords a protective effect. Although moderate drinking of any alcohol helps to reduce the incidence of coronary heart disease, there is no clear evidence that red wine confers an additional benefit. Here we show that red wines strongly inhibit the synthesis of endothelin-1, a vasoactive peptide that is crucial in the development of coronary atherosclerosis. Our findings indicate that components specific to red wine may help to prevent coronary heart disease.


Arthritis Research & Therapy | 2005

The differential contribution of tumour necrosis factor to thermal and mechanical hyperalgesia during chronic inflammation

Julia J. Inglis; Ahuva Nissim; Delphine M. Lees; Stephen P. Hunt; Yuti Chernajovsky; Bruce L. Kidd

Therapies directed against tumour necrosis factor (TNF) are effective for the treatment of rheumatoid arthritis and reduce pain scores in this condition. In this study, we sought to explore mechanisms by which TNF contributes to inflammatory pain in an experimental model of arthritis. The effects of an anti-TNF agent, etanercept, on behavioural pain responses arising from rat monoarthritis induced by complete Freunds adjuvant were assessed and compared with expression of TNF receptors (TNFRs) by dorsal root ganglion (DRG) cells at corresponding time points. Etanercept had no effect on evoked pain responses in normal animals but exerted a differential effect on the thermal and mechanical hyperalgesia associated with rat arthritis induced by complete Freunds adjuvant (CFA). Joint inflammation was associated with increased TNFR1 and TNFR2 expression on DRG cells, which was maintained throughout the time course of the model. TNFR1 expression was increased in neuronal cells of the DRG bilaterally after arthritis induction. In contrast, TNFR2 expression occurred exclusively on non-neuronal cells of the macrophage–monocyte lineage, with cell numbers increasing in a TNF-dependent fashion during CFA-induced arthritis. A strong correlation was observed between numbers of macrophages and the development of mechanical hyperalgesia in CFA-induced arthritis. These results highlight the potential for TNF to play a vital role in inflammatory hyperalgesia, both by a direct action on neurons via TNFR1 and by facilitating the accumulation of macrophages in the DRG via a TNFR2-mediated pathway.


Clinical Science | 2002

Comparison of red wine extract and polyphenol constituents on endothelin-1 synthesis by cultured endothelial cells.

Noorafza Q. Khan; Delphine M. Lees; Julie A. Douthwaite; Martin J. Carrier; Roger Corder

Regular consumption of red wine reduces mortality from coronary heart disease. This observation has been attributed to the anti-thrombotic effects of ethanol and to the antioxidant properties of polyphenolic compounds present in red wine. Here we show that an extract of red wine polyphenols causes a concentration-dependent inhibition of endothelin-1 synthesis in cultured bovine aortic endothelial cells. This action was associated with modifications in phosphotyrosine staining, indicating that the active components of red wine cause specific modifications of tyrosine kinase signalling. Thus inhibition of endothelin-1 synthesis by red wine may reduce the development of atherosclerosis, and hence decrease coronary heart disease.


Nature | 2014

Endothelial-cell FAK targeting sensitizes tumours to DNA-damaging therapy.

Bernardo Tavora; Louise E. Reynolds; Silvia Batista; Fevzi Demircioglu; Isabelle Fernandez; Tanguy Lechertier; Delphine M. Lees; Ping-Pui Wong; Annika N Alexopoulou; George Elia; Andrew Clear; Adeline C. Ledoux; Jill E. Hunter; Neil D. Perkins; John G. Gribben; Kairbaan Hodivala-Dilke

Chemoresistance is a serious limitation of cancer treatment. Until recently, almost all the work done to study this limitation has been restricted to tumour cells. Here we identify a novel molecular mechanism by which endothelial cells regulate chemosensitivity. We establish that specific targeting of focal adhesion kinase (FAK; also known as PTK2) in endothelial cells is sufficient to induce tumour-cell sensitization to DNA-damaging therapies and thus inhibit tumour growth in mice. The clinical relevance of this work is supported by our observations that low blood vessel FAK expression is associated with complete remission in human lymphoma. Our study shows that deletion of FAK in endothelial cells has no apparent effect on blood vessel function per se, but induces increased apoptosis and decreased proliferation within perivascular tumour-cell compartments of doxorubicin- and radiotherapy-treated mice. Mechanistically, we demonstrate that endothelial-cell FAK is required for DNA-damage-induced NF-κB activation in vivo and in vitro, and the production of cytokines from endothelial cells. Moreover, loss of endothelial-cell FAK reduces DNA-damage-induced cytokine production, thus enhancing chemosensitization of tumour cells to DNA-damaging therapies in vitro and in vivo. Overall, our data identify endothelial-cell FAK as a regulator of tumour chemosensitivity. Furthermore, we anticipate that this proof-of-principle data will be a starting point for the development of new possible strategies to regulate chemosensitization by targeting endothelial-cell FAK specifically.


Journal of Agricultural and Food Chemistry | 2010

Regulation of Vascular Endothelial Function by Procyanidin-Rich Foods and Beverages†

Paul Caton; Mark R. Pothecary; Delphine M. Lees; Noorafza Q. Khan; Elizabeth G. Wood; Toshihiko Shoji; Tomomasa Kanda; Gurvinder Rull; Roger Corder

Flavonoid-rich diets are associated with a lower mortality from cardiovascular disease. This has been linked to improvements in endothelial function. However, the specific flavonoids, or biologically active metabolites, conferring these beneficial effects have yet to be fully defined. In this experimental study of the effect of flavonoids on endothelial function cultured endothelial cells have been used as a bioassay with endothelin-1 (ET-1) synthesis being measured an index of the response. Evaluation of the relative effects of extracts of cranberry juice compared to apple, cocoa, red wine, and green tea showed inhibition of ET-1 synthesis was dependent primarily on their oligomeric procyanidin content. Procyanidin-rich extracts of cranberry juice triggered morphological changes in endothelial cells with reorganization of the actin cytoskeleton and increased immunostaining for phosphotyrosine residues. These actions were independent of antioxidant activity. Comparison of the effects of apple procyanidin monomers through heptamer showed a clear structure-activity relationship. Although monomer, dimer, and trimer had little effect on ET-1 synthesis, procyanidin tetramer, pentamer, hexamer, and heptamer produced concentration-dependent decreases with IC(50) values of 5.4, 1.6, 0.9, and 0.7 microM, respectively. Levels of ET-1 mRNA showed a similar pattern of decreases, which were inversely correlated with increased expression of Kruppel-like factor 2 (KLF2), a key endothelial transcription factor with a broad range of antiatherosclerotic actions including suppression of ET-1 synthesis. Future investigations of procyanidin-rich products should assess the role KLF2 induction plays in the beneficial vascular effects of high flavonoid consumption.


Biochemical Pharmacology | 2003

A role for increased mRNA stability in the induction of endothelin-1 synthesis by lipopolysaccharide.

Julie A. Douthwaite; Delphine M. Lees; Roger Corder

An association exists between infection and cardiovascular diseases, including atherosclerosis, stroke and myocardial infarction. This may involve endothelin-1 (ET-1) which has been implicated in these and other vascular pathologies. ET-1 synthesis is controlled primarily by the level of its mRNA and numerous stimuli, including infection, lead to elevated ET-1 levels. Here, we have investigated the regulation of ET-1 release and preproET-1 (ppET-1) mRNA in bovine aortic endothelial cells by lipopolysaccharide (LPS). ET-1 release from bovine aortic endothelial cells was stimulated by LPS and reporter gene assays implicated LPS-induced ppET-1 transcription. However, changes in transcription were modest compared to increases in ET-1 synthesis. Therefore, ppET-1 mRNA levels were measured by real-time reverse transcription-polymerase chain reaction. The effect of LPS on ppET-1 mRNA levels was more marked than on transcription (1.2-fold increase in transcription vs. 5.5-fold increase in ppET-1 mRNA). Analysis of ppET-1 mRNA stability by real-time reverse transcription-polymerase chain reaction showed that LPS increased its half-life by approximately 2-fold. Thus, upregulated ppET-1 mRNA and hence increased ET-1 synthesis may be due to both increased transcription and reduced mRNA degradation. These effects of LPS on mRNA stability may be a key mechanism in vascular pathologies through which many proteins are induced in response to infection.


Journal of Molecular Biology | 2008

Existence of Multiple Isoforms of HS1-Associated Protein X-1 in Murine and Human Tissues

Delphine M. Lees; Ian R. Hart; John Marshall

To date, the literature concerning the HS1 (haematopoietic cell-specific protein 1)-associated protein X-1 (HAX1) protein has reported considerable variation regarding its function in mammalian cells, subcellular localisation and binding partners. We show here that HAX1 comprises a family of proteins. Murine tissues express three mRNA variants, encoded by two genes on chromosomes 2 and 3. The chromosome 2 gene is intronless and would encode a protein 100% identical with that encoded by chromosome 3. In humans, alternative splice variants, encoded by the chromosome 1 gene, produce a family of transcripts composed of up to eight members. Based on the sequences published in GenBank and Ensembl, we designed specific primers and detected by PCR three mRNA species in murine tissues and eight variants in human cells. We screened a panel of 19 human cell lines as well as primary fibroblasts, oral keratinocytes and freshly isolated peripheral blood mononuclear cells. All human cells studied expressed at least six of the possible HAX1 mRNA variants. In silico analysis of the variants revealed an open reading frame in all of them, suggesting that murine and human tissues can express two and eight HAX1 proteins, respectively. Analysis of human protein lysates by Western blotting with the use of a monoclonal anti-HAX1 antibody revealed multiple bands. These bands were decreased after treatment of cells with a single small interfering RNA duplex targeting a region common to six of the variants, confirming their identity as HAX1 proteins. Comparison of the human variants with the six HAX1 homologues described to date in the chimpanzee (Pan troglodytes) and the four homologues described in macaque (Macaca mulatta) revealed very high conservation with only one amino acid substitution between human and chimpanzee homologues. Moreover, a number of additional products were amplified and sequenced, which indicated that further human isoforms are likely to exist. These findings are likely to explain the current confusion concerning putative HAX1 function.


Clinical Science | 2004

The procyanidin-induced pseudo laminar shear stress response: a new concept for the reversal of endothelial dysfunction.

Roger Corder; Richard C. Warburton; Noorafza Q. Khan; Ruth E. Brown; Elizabeth G. Wood; Delphine M. Lees

Reduced endothelium-dependent vasodilator responses with increased synthesis of ET-1 (endothelin-1) are characteristics of endothelial dysfunction in heart failure and are predictive of mortality. Identification of treatments that correct these abnormalities may have particular benefit for patients who become refractory to current regimens. Hawthorn preparations have a long history in the treatment of heart failure. Therefore we tested their inhibitory effects on ET-1 synthesis by cultured endothelial cells. These actions were compared with that of GSE (grape seed extract), as the vasoactive components of both these herbal remedies are mainly oligomeric flavan-3-ols called procyanidins. This showed extracts of hawthorn and grape seed were equipotent as inhibitors of ET-1 synthesis. GSE also produced a potent endothelium-dependent vasodilator response on preparations of isolated aorta. Suppression of ET-1 synthesis at the same time as induction of endothelium-dependent vasodilation is a similar response to that triggered by laminar shear stress. Based on these results and previous findings, we hypothesize that through their pharmacological properties procyanidins stimulate a pseudo laminar shear stress response in endothelial cells, which helps restore endothelial function and underlies the benefit from treatment with hawthorn extract in heart failure.


Nature Communications | 2013

FAK-heterozygous mice display enhanced tumour angiogenesis

Vassiliki Kostourou; Tanguy Lechertier; Louise E. Reynolds; Delphine M. Lees; Marianne Baker; Dylan T. Jones; Bernardo Tavora; Antoine R. Ramjaun; Graeme M. Birdsey; Stephen Robinson; Madeline Parsons; Anna M. Randi; Ian R. Hart; Kairbaan Hodivala-Dilke

Genetic ablation of endothelial Focal Adhesion Kinase (FAK) can inhibit pathological angiogenesis, suggesting that loss of endothelial FAK is sufficient to reduce neovascularisation. Here we show that reduced stromal-FAK expression in FAK-heterozygous mice unexpectedly enhances both B16F0 and CMT19T tumour growth and angiogenesis. We further demonstrate that cell proliferation and microvessel sprouting, but not migration, are increased in serum-stimulated FAK-heterozygous endothelial cells. FAK-heterozygous endothelial cells display an imbalance in FAK phosphorylation at pY397 and pY861 without changes in Pyk2 or Erk1/2 activity. By contrast, serum-stimulated phosphorylation of Akt is enhanced in FAK-heterozygous endothelial cells and these cells are more sensitive to Akt inhibition. Additionally, low doses of a pharmacological FAK inhibitor, although too low to affect FAK autophosphorylation in vitro, can enhance angiogenesis ex vivo and tumor growth in vivo. Our results highlight a potential novel role for FAK as a non-linear, dose-dependent regulator of angiogenesis where heterozygous levels of FAK enhance angiogenesis.


Journal of Vascular Research | 2006

Homocysteine-Induced Endothelin-1 Release Is Dependent on Hyperglycaemia and Reactive Oxygen Species Production in Bovine Aortic Endothelial Cells

Amarjit S. Sethi; Delphine M. Lees; Julie A. Douthwaite; Anne B. Dawnay; Roger Corder

Background: Elevated plasma homocysteine (Hcy) is a risk factor for coronary disease. The objective of this study was to investigate whether Hcy either alone or in high glucose conditions induces endothelin-1 (ET-1) synthesis via the production of reactive oxygen species (ROS). Methods: Bovine aortic endothelial cells were grown in high (25 mmol/l) and low (5 mmol/l) glucose medium. Results: In high glucose, Hcy caused a time-dependent increase in ET-1 release, which was greatest with 50 µmol/l Hcy at 24 h (p < 0.01). This effect was not seen in low glucose conditions. In high glucose and 50 µmol/l Hcy, ET-1 mRNA levels were maximal after 1 h (p < 0.05). Tissue factor mRNA levels were raised at 4 h (p < 0.05) and functional activity was raised at 6 h (p < 0.01). Intracellular ROS production was increased by 50 µmol/l Hcy after 24 h (p < 0.05) but only in high glucose. To investigate the role of mitochondrial metabolism in ROS production, cells were incubated with thenoyltrifluoroacetone (inhibitor of complex II) or carbonyl cyanide m-chlorophenylhydrazone (uncoupler of oxidative phosphorylation). Both compounds abolished the Hcy-induced increase in ROS production and ET-1 release. There was an alteration in intracellular glutathione (GSH) levels with Hcy treatment with more oxidised GSH present. Conclusion: The combined metabolic burden of Hcy and high glucose stimulates ET-1 synthesis in bovine aortic endothelial cells via a mechanism dependent on the production of mitochondrial ROS, but may not be generalisable to all types of endothelial cells.

Collaboration


Dive into the Delphine M. Lees's collaboration.

Top Co-Authors

Avatar

Roger Corder

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Kairbaan Hodivala-Dilke

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Bernardo Tavora

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Isabelle Fernandez

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Noorafza Q. Khan

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Silvia Batista

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Tanguy Lechertier

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Annika N Alexopoulou

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Elizabeth G. Wood

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Julie A. Douthwaite

Queen Mary University of London

View shared research outputs
Researchain Logo
Decentralizing Knowledge