Delphine Mallet
Boston Children's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Delphine Mallet.
Journal of Medical Genetics | 2011
Sabina Benko; Christopher T. Gordon; Delphine Mallet; Rajini Sreenivasan; Christel Thauvin-Robinet; Atle Brendehaug; Sophie Thomas; Ove Bruland; Michel David; Marc Nicolino; Audrey Labalme; Damien Sanlaville; Patrick Callier; Valérie Malan; Frédéric Huet; Frédérique Dijoud; Arnold Munnich; Laurence Faivre; Jeanne Amiel; Vincent R. Harley; Gunnar Houge; Yves Morel; Stanislas Lyonnet
Background The early gonad is bipotential and can differentiate into either a testis or an ovary. In XY embryos, the SRY gene triggers testicular differentiation and subsequent male development via its action on a single gene, SOX9. The supporting cell lineage of the bipotential gonad will differentiate as testicular Sertoli cells if SOX9 is expressed and conversely will differentiate as ovarian granulosa cells when SOX9 expression is switched off. Results Through copy number variation mapping this study identified duplications upstream of the SOX9 gene in three families with an isolated 46,XX disorder of sex development (DSD) and an overlapping deletion in one family with two probands with an isolated 46,XY DSD. The region of overlap between these genomic alterations, and previously reported deletions and duplications at the SOX9 locus associated with syndromic and isolated cases of 46,XX and 46,XY DSD, reveal a minimal non-coding 78 kb sex determining region located in a gene desert 517–595 kb upstream of the SOX9 promoter. Conclusions These data indicate that a non-coding regulatory region critical for gonadal SOX9 expression and subsequent normal sex development is located far upstream of the SOX9 promoter. Its copy number variations are the genetic basis of isolated 46,XX and 46,XY DSDs of variable severity (ranging from mild to complete sex reversal). It is proposed that this region contains a gonad specific SOX9 transcriptional enhancer(s), the gain or loss of which results in genomic imbalance sufficient to activate or inactivate SOX9 gonadal expression in a tissue specific manner, switch sex determination, and result in isolated DSD.
The Journal of Clinical Endocrinology and Metabolism | 2009
Bruno Ferraz-de-Souza; Franziska Martin; Delphine Mallet; Rebecca E. Hudson-Davies; Patricia Cogram; Lin Lin; Dianne Gerrelli; Felix Beuschlein; Yves Morel; Angela Huebner; John C. Achermann
CONTEXT Disorders of adrenal development result in significant morbidity and mortality. However, the molecular basis of human adrenal development, and many forms of disease, is still poorly understood. OBJECTIVES We evaluated the role of two new candidate genes, CBP/p300-interacting transactivator, with Glu/Asp-rich C-terminal domain, 2 (CITED2), and pre-B-cell leukemia transcription factor 1 (PBX1), in human adrenal development and disease. DESIGN CITED2 and PBX1 expression in early human fetal adrenal development was assessed using RT-PCR and in situ hybridization. The regulation of CITED2 and PBX1 by steroidogenic factor-1 (SF-1) and dosage-sensitive sex reversal, adrenal hypoplasia congenital, critical region on the X chromosome, gene-1 (DAX1) was evaluated in NCI-H295R human adrenocortical tumor cells by studying promoter regulation. Finally, mutational analysis of CITED2 and PBX1 was performed in patients with primary adrenal disorders. RESULTS CITED2 and PBX1 are expressed in the human fetal adrenal gland during early development. Both genes are activated by SF-1 in a dose-dependent manner in NCI-H295R cells, and, surprisingly, PBX1 is synergistically activated by SF-1 and DAX1. Mutational analysis failed to reveal significant coding sequence changes in individuals with primary adrenal disorders. CONCLUSIONS CITED2 and PBX1 are likely to be important mediators of adrenal development and function in humans, but mutations in these genes are not common causes of adrenal failure in patients in whom a molecular diagnosis remains unknown. The positive interaction between DAX1 and SF-1 in regulating PBX1 may be an important mechanism in this process.
Biochemical and Biophysical Research Communications | 2011
Christa E. Flück; Delphine Mallet; Gaby Hofer; Dinane Samara-Boustani; Juliane Léger; Michel Polak; Yves Morel; Amit V. Pandey
P450 oxidoreductase (POR) is the electron donor for all microsomal P450s including steroidogenic enzymes CYP17A1, CYP19A1 and CYP21A2. We found a novel POR mutation P399_E401del in two unrelated Turkish patients with 46,XX disorder of sexual development. Recombinant POR proteins were produced in yeast and tested for their ability to support steroid metabolizing P450 activities. In comparison to wild-type POR, the P399_E401del protein was found to decrease catalytic efficiency of 21-hydroxylation of progesterone by 68%, 17α-hydroxylation of progesterone by 76%, 17,20-lyase action on 17OH-pregnenolone by 69%, aromatization of androstenedione by 85% and cytochrome c reduction activity by 80%. Protein structure analysis of the three amino acid deletion P399_E401 revealed reduced stability and flexibility of the mutant. In conclusion, P399_E401del is a novel mutation in POR that provides valuable genotype-phenotype and structure-function correlation for mutations in a different region of POR compared to previous studies. Characterization of P399_E401del provides further insight into specificity of different P450s for interaction with POR as well as nature of metabolic disruptions caused by more pronounced effect on specific P450s like CYP17A1 and aromatase.
Advances in Experimental Medicine and Biology | 2011
Yves Morel; Ingrid Plotton; Delphine Mallet; Marc Nicolino; Anne-Marie Bertrand; Michel David; Claire Nihoul-Fékété; Pierre Chatelain
Mutations of genes involved in sex development have been largely reported in the literature, but few data are available to evaluate the proportion of each gene defect in 46,XY DSD patients. We report molecular studies of a cohort of 644 families.
Annales D Endocrinologie | 2016
Yves Morel; Florence Roucher; Ingrid Plotton; Claire Goursaud; Véronique Tardy; Delphine Mallet
Progesterone, estrogens, androgens and glucocorticoids are involved in pregnancy from implantation to parturition. Their biosynthesis and their metabolism result from complex pathways involving the fetus, the placenta and the mother. The absence of expression of some steroïdogenic enzymes as CYP17 in placenta and in adrenal fetal zone and the better determination of the onset and variation of others especially HSD3B2 during the pregnancy explain the production of the steroid hormones. Moreover the consequences of some disorders of steroidogenesis (especially aromatase, POR, CYP11A1 and 21-hydroxylase deficiencies) in fetus and mother during the pregnancy have permit to elucidate these complex pathways. This better knowledge of steroid hormones production associated with their dosages in maternal plasma/urine or amniotic fluid using new specific assays as LC-MS MS could facilitate the follow-up of normal and pathological pregnancies. Moreover, these advances should be a basis to evaluate the impact of multiple pathologies of the pregnancy and pharmacologic and xenobiotic consequences on their metabolism.
European Journal of Pediatrics | 2012
Oksana Lekarev; Delphine Mallet; Tony Yuen; Yves Morel; Maria I. New
Congenital lipoid adrenal hyperplasia (lipoid CAH) is a rare autosomal recessive disorder of adrenal and gonadal steroidogenesis. It is most frequently caused by mutations in the steroidogenic acute regulatory protein (StAR) gene. Patients with lipoid CAH typically present with adrenal crisis in early infancy, and those with a 46,XY karyotype have female genitalia. However, it has been recently recognized that the phenotype can be quite variable, in that adrenal insufficiency is detected later in life and patients may have partially masculinized or even normal male genitalia. We report a patient assigned and reared as a female with a 46,XY karyotype and with a homozygous intron 2 (c.178+1G>C) splice site mutation of the StAR gene, which is a novel mutation that causes lipoid CAH. Her clinical presentation was somewhat atypical for a patient with classic lipoid CAH, marked by mild masculinization of the genitalia, detectable adrenal steroids at baseline, and ability to tolerate the stress of a surgical procedure with anesthesia without receiving glucocorticoid treatment. Conclusion: There is significant phenotypic variability among patients with lipoid CAH. While splice site mutations in the StAR gene lead to premature translational termination, resulting in truncated and non-functional proteins, there is phenotypic variability among patients with such mutations. Our patient appears to have the more atypical phenotype compared to reported patients with similar mutations. The molecular mechanism underlying this heterogeneity remains unclear.
Annales D Endocrinologie | 2015
Agathe Guenego; Yves Morel; Oana Ionesco; Delphine Mallet; Melanie Priou-Guesdon
17α-Hydroxylase deficiency is a rare form of congenital adrenal hyperplasia. It leads to a reduced production of cortisol and sex steroids and thus an increase in adrenocorticotrophic hormone and gonadotrophins levels. High adrenocorticotrophic hormone levels result in an accumulation of 17-deoxysteroids, such as deoxycorticosterone and corticosterone. Deoxycorticosterone and corticosterone have an important mineralocorticoid activity. We report the case of a 66-year-old woman who presented with hypertension and symptomatic hypokalaemia. Primary hyperaldosteronism was suspected and a right adrenal mass was removed. After surgery, the patient was referred to the endocrinology department for persistant hypokalaemia. Actually, she presented some signs of hypogonadism (impuberism, primary amenorrhea, infertility). Cortisol and 17OH-progesterone serum levels were low. Deoxycorticosterone and corticosterone were markedly elevated. The hypothesis of 17α-hydroxylase deficiency was considered and confirmed by genetic exploration. A non-sense mutation c.938G>A (p.Trp313X) in exon 5 of the CYP17 gene was found that had never been reported so far to our knowledge. Moreover, the patients karyotype found a mosaic Turner syndrome. This case is particularly interesting because of the delay of diagnosis. The 17α-hydroxylase deficiency diagnosis is to be considered when hypertension is associated with hypokalaemia and hypogonadism, even in adult patients.
Encyclopedia of Endocrine Diseases | 2004
Delphine Mallet; Yves Morel
Congenital lipoid adrenal hyperplasia is a rare autosomal recessive disease caused by defective production of all adrenal and gonadal steroids, responsible for severe adrenal insufficiency and female phenotype in both sexes. Impairment of steroidogenesis is due to the inability of affected cells to convert cholesterol into pregnenolone.
Frontiers in Endocrinology | 2018
Claire Goursaud; Delphine Mallet; Alexandre Janin; Rita Menassa; Véronique Tardy-Guidollet; Gianni Russo; Anne Lienhardt-Roussie; Claudine Lecointre; Ingrid Plotton; Yves Morel; Florence Roucher-Boulez
Context: The cholesterol side chain cleavage enzyme (CYP11A1) catalyzes the conversion of cholesterol to pregnenolone, the first rate-limiting step of steroidogenesis. CYP11A1 mutations are associated with primary adrenal insufficiency (PAI) as well as disorders of sex development (DSD) in 46,XY patients. Objective: To define the pathogenicity mechanism for the p.Glu314Lys variant, previously reported, and found in four additional patients with CYP11A1 deficiency. Subjects and Methods: DNA of four patients presenting with delayed PAI and/or 46,XY DSD were studied by Sanger or Massively Parallel sequencing. Three CYP11A1 mutations were characterized in vitro and in silico, and one by mRNA analysis on testicular tissue. Results: All patients were compound heterozygous for the previously described p.Glu314Lys variant. In silico studies predicted this mutation as benign with no effect on splicing but mRNA analysis found that it led to incomplete exon 5 skipping. This mechanism was confirmed by minigene experiment. The protein carrying this mutation without exon skipping should conserve almost normal activity, according to in vitro studies. Two other mutations found in trans, the p.Arg120Gln and p.Arg465Trp, had similar activity compared to negative control, consistent with the in silico studies. Conclusions: We provide biological proof that the p. Glu314Lys variant is pathogenic due to its impact on splicing and seems responsible for the moderate phenotype of the four patients reported herein. The present study highlights the importance of considering the potential effect of a missense variant on splicing when it is not predicted to be disease causing.
The Journal of Clinical Endocrinology and Metabolism | 2004
Delphine Mallet; Patricia Bretones; Laurence Michel-Calemard; Frédérique Dijoud; Michel David; Yves Morel