Delphine Retraint
University of Technology of Troyes
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Delphine Retraint.
Materials Science Forum | 2009
Laurent Waltz; Delphine Retraint; Arjen Roos; P. Olier; Jian Lu
. In the present study, a method is presented combining surface nanocrystalline treatment (SMAT) and the co-rolling process. The aim of this duplex treatment is the development of a 316L stainless steel semi-massive multilayered bulk structure with improved yield and ultimate tensile strengths, while conserving an acceptable elongation to failure by optimizing the volume fraction and distribution of the nano-grains in the laminate. To characterize this composite structure, tensile tests as well as sharp nanoindentation tests were carried out to follow the local hardness evolution through the cross-section of the laminate. Furthermore, transmission electron microscope (TEM) observations were carried out to determine the correlation between the microstructure, the local hardness and the mechanical response of the structure.
Microscopy and Microanalysis | 2015
Gwénaëlle Proust; Delphine Retraint; M. Chemkhi; Arjen Roos; Clémence Demangel
Austenitic 316L stainless steel can be used for orthopedic implants due to its biocompatibility and high corrosion resistance. Its range of applications in this field could be broadened by improving its wear and friction properties. Surface properties can be modified through surface hardening treatments. The effects of such treatments on the microstructure of the alloy were investigated here. Surface Mechanical Attrition Treatment (SMAT) is a surface treatment that enhances mechanical properties of the material surface by creating a thin nanocrystalline layer. After SMAT, some specimens underwent a plasma nitriding process to further enhance their surface properties. Using electron backscatter diffraction, transmission Kikuchi diffraction, energy dispersive spectroscopy, and transmission electron microscopy, the microstructural evolution of the stainless steel after these different surface treatments was characterized. Microstructural features investigated include thickness of the nanocrystalline layer, size of the grains within the nanocrystalline layer, and depth of diffusion of nitrogen atoms within the material.
Materials Science Forum | 2005
C. Pilé; Manuel François; Delphine Retraint; Emmanuelle Rouhaud; Jian Lu
The aim of this work is to reach a better understanding of the ultrasonic shot-peening process and, in particular, the evolution of the shot speed distribution. A simple 1D modelling of the interaction between the shots and the sonotrode is carried out. The impact is considered as inelastic with an energy absorption that depends on the speed of the shot. It is found that after about 10 interactions (» 1s) the speed distribution in the chamber follows a Maxwell-Boltzmann distribution, which is the distribution found in a perfect gas at equilibrium. The influence of various process parameters such as the sonotrode amplitude, the vibration frequency on the average speed and on the Almen intensity is studied.
Materials Science Forum | 2005
T. Roland; Delphine Retraint; K. Lu; Jian Lu
Improved mechanical behavior of surface nanostructured metallic materials produced by means of a surface mechanical attrition treatment (S.M.A.T) is investigated experimentally. Based on microscopic observations and residual stress measurements, factors leading to the high strength and yielding are discussed. The effects due to treatment, as compressive residual stresses, are in that way studied for a better understanding of their influence on the global mechanical response of the nanostructured material. In regards of this, a simple way to increase the ductility of such a nanostructured material is also presented.
Materials Science Forum | 2011
Delphine Retraint; M. Zakaria Quadir; Wan Qiang Xu; Laurent Waltz; M. Ferry
It is possible to produce a nanocrystalline, multilayered composite structure with enhanced mechanical properties by assembling three 316L surface nanostructured stainless steel plates by roll bonding. The Surface Mechanical Attrition Treatment (SMAT) was first used to generate nanocrystalline layers on the elementary plates so that their mechanical properties were improved. They were then assembled through co-rolling. A composite structure of nanocrystalline layers of high strength alternating with more ductile layers was obtained to achieve both high strength and ductility. Microscopy observations and EBSD measurements were carried out and the bonding interfaces were analysed in detail to explore the mechanisms involved during the SMAT/Co-rolling duplex process.
IOP Conference Series: Materials Science and Engineering | 2014
Zhidan Sun; M. Chemkhi; P. Kanouté; Delphine Retraint
This work deals with the influence of surface mechanical attrition treatment (SMAT) on fatigue properties of a medical grade 316L stainless steel. Metallurgical parameters governed by SMAT such as micro-hardness and nanocrystalline layer are characterized using different techniques. Low cycle fatigue tests are performed to investigate the fatigue properties of untreated and SMAT-processed samples. The results show that the stress amplitude of SMAT- processed samples with two different treatment intensities is significantly enhanced compared to untreated samples, while the fatigue strength represented by the number of cycles to failure is not improved in the investigated strain range. The enhancement in the stress amplitude of treated samples can be attributed to the influence of the SMAT affected layer.
Microscopy Research and Technique | 2013
Y. Pi; Joël Faure; G. Agoda-Tandjawa; C. Andreazza; Sylvain Potiron; A. Levesque; Clémence Demangel; Delphine Retraint; Hicham Benhayoune
In this study, microstructural characterization of Ti‐6Al‐4V alloy, subjected to the duplex surface mechanical attrition treatment (SMAT)/nitriding treatment, leading to improve its mechanical properties, was carried out through novel and original samples preparation methods. Instead of acid etching which is limited for morphological characterization by scanning electron microscopy (SEM), an original ion polishing method was developed. Moreover, for structural characterization by transmission electron microscopy (TEM), an ion milling method based with the use of two ions guns was also carried out for cross‐section preparation. To demonstrate the efficiency of the two developed methods, morphological investigations were done by traditional SEM and field emission gun SEM. This was followed by structural investigations through selected area electron diffraction (SAED) coupled with TEM and X‐ray diffraction techniques. The results demonstrated that ionic polishing allowed to reveal a variation of the microstructure according to the surface treatment that could not be observed by acid etching preparation. TEM associated to SAED and X‐ray diffraction provided information regarding the nanostructure compositional changes induced by the duplex SMAT/nitriding process. Microsc. Res. Tech. 76:897–903, 2013.
Materials Science Forum | 2006
T. Roland; Delphine Retraint; K. Lu; Jian Lu
A novel surface treatment has been developed in the present work to enhance the tribological properties of 316L Stainless Steel. This Technique involves the formation of a nanocrystalline layer ascribable to a grain refinement mechanism induced by repeated impact loadings supported by the surface. The resultant system has a layered structure, comprising nanometric grains (less than 100 nm) at the top and a strain hardened transition layer in the subsurface. Such a microstructural feature has the potential to significantlty enhance the surface hardness and to create a high compressive residual stress state. The tribological properties of the stainless steel are thus improved in terms of lower friction coefficient and increased wear resistance. Detailed studies on the response of the nanocrystalline surface layer to annealing at temperatures between 400°C and 600°C showed that an annealing at high temperature can offer much better tribological enhancement than low temperature annealings due to enhanced martensitic transformation.
Materials Science Forum | 2002
Delphine Retraint; C. Garnier; Bruno Guelorget; Jian Lu
The aim of this work is to study the residual stress profile generated by conventional and ultrasonic shot peening in a 41CR4 steel steering ball joint as well as to evaluate the effect of these two mechanical surface treatments on the fatigue behaviour of this automotive part. The stress field generated by both processes has been evaluated using X-ray diffraction and incremental hole drilling methods. The results reveal that it is possible to generate a higher prestressed layer with a smaller surface roughness by ultrasonic shot-peening than by the conventional process. Moreover, the ultrasonic shot peened parts present a higher fatigue resistance than the conventional shot peened materials. Ultrasonic treatments can thus be a serious competitor to conventional shot peening processes.
Materials Science Forum | 2006
Florent Cochennec; Emmanuelle Rouhaud; Delphine Retraint; Sébastien Rouquette; Arjen Roos
Shot-peening is a surface treatment widely used in the industry to improve fatigue life of mechanical components by introducing compressive residual stresses. Ultrasonic shot-peening is a recent development of this process. While the classical shot-peening process uses pneumatic energy to project the shots, ultrasonic peening uses high-power ultrasounds. This energy source allows the use of larger shots projected at lower velocity as compared to classical shot-peening. This work aims at studying the mechanical response (restitution coefficient, residual stress field) of a surface impacted by a shot at low velocity using the finite element method and experimental analysis. This paper presents the simulation of a single elastic steel shot normally impacting an Aluminum alloy plate considered to exhibit a linear-elastic behavior and non-linear isotropic work hardening characteristics. The numerical simulations are carried out for different impact velocities in order to take into account the heterogeneous shot velocity field observed in an ultrasonic shot-peening chamber. We compare the simulated rebound energy and the indentation profiles obtained for different impact velocities to experimental results. The simulated residual stress field topology shows a strong dependence on the shot velocity. While numerical results obtained at high impact energy agree well with literature results, the residual stress distribution simulated for low impact energies shows a tensile layer below the impacted area. The restitution coefficients and the indentation profiles compare well with the experiments.