Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Demetres D. Leonidas is active.

Publication


Featured researches published by Demetres D. Leonidas.


Journal of Medicinal Chemistry | 2008

Naturally Occurring Pentacyclic Triterpenes as Inhibitors of Glycogen Phosphorylase : Synthesis, Structure-Activity Relationships, and X-ray Crystallographic Studies

Xiaoan Wen; Hongbin Sun; Jun Liu; Keguang Cheng; Pu Zhang; Liying Zhang; Jia Hao; Luyong Zhang; Peizhou Ni; Spyros E. Zographos; Demetres D. Leonidas; Kyra-Melinda Alexacou; Thanasis Gimisis; Joseph M. Hayes; Nikos G. Oikonomakos

Twenty-five naturally occurring pentacyclic triterpenes, 15 of which were synthesized in this study, were biologically evaluated as inhibitors of rabbit muscle glycogen phosphorylase a (GPa). From SAR studies, the presence of a sugar moiety in triterpene saponins resulted in a markedly decreased activity ( 7, 18- 20) or no activity ( 21, 22). These saponins, however, might find their value as potential natural prodrugs which are much more water-soluble than their corresponding aglycones. To elucidate the mechanism of GP inhibition, we have determined the crystal structures of the GPb-asiatic acid and GPb-maslinic acid complexes. The X-ray analysis indicates that the inhibitors bind at the allosteric activator site, where the physiological activator AMP binds. Pentacyclic triterpenes represent a promising class of multiple-target antidiabetic agents that exert hypoglycemic effects, at least in part, through GP inhibition.


Current Medicinal Chemistry | 2008

New inhibitors of glycogen phosphorylase as potential antidiabetic agents.

László Somsák; Marietta Tóth; Éva Bokor; Evangelia D. Chrysina; Kyra-Melinda Alexacou; Joseph M. Hayes; Costas Tiraidis; E. Lazoura; Demetres D. Leonidas; Spyros E. Zographos; Nikos G. Oikonomakos

The protein glycogen phosphorylase has been linked to type 2 diabetes, indicating the importance of this target to human health. Hence, the search for potent and selective inhibitors of this enzyme, which may lead to antihyperglycaemic drugs, has received particular attention. Glycogen phosphorylase is a typical allosteric protein with five different ligand binding sites, thus offering multiple opportunities for modulation of enzyme activity. The present survey is focused on recent new molecules, potential inhibitors of the enzyme. The biological activity can be modified by these molecules through direct binding, allosteric effects or other structural changes. Progress in our understanding of the mechanism of action of these inhibitors has been made by the determination of high-resolution enzyme inhibitor structures (both muscle and liver). The knowledge of the three-dimensional structures of protein-ligand complexes allows analysis of how the ligands interact with the target and has the potential to facilitate structure-based drug design. In this review, the synthesis, structure determination and computational studies of the most recent inhibitors of glycogen phosphorylase at the different binding sites are presented and analyzed.


Journal of Biological Chemistry | 2001

The Crystal Structure of Human Placenta Growth Factor-1 (PlGF-1), an Angiogenic Protein, at 2.0 Å Resolution

S. Iyer; Demetres D. Leonidas; G. J. Swaminathan; D. Maglione; M. Battisti; M. Tucci; M. G. Persico; K.R. Acharya

The angiogenic molecule placenta growth factor (PlGF) is a member of the cysteine-knot family of growth factors. In this study, a mature isoform of the human PlGF protein, PlGF-1, was crystallized as a homodimer in the crystallographic asymmetric unit, and its crystal structure was elucidated at 2.0 Å resolution. The overall structure of PlGF-1 is similar to that of vascular endothelial growth factor (VEGF) with which it shares 42% amino acid sequence identity. Based on structural and biochemical data, we have mapped several important residues on the PlGF-1 molecule that are involved in recognition of the fms-like tyrosine kinase receptor (Flt-1, also known as VEGFR-1). We propose a model for the association of PlGF-1 and Flt-1 domain 2 with precise shape complementarity, consider the relevance of this assembly for PlGF-1 signal transduction, and provide a structural basis for altered specificity of this molecule.


Journal of Biological Chemistry | 2002

Charcot-Leyden crystal protein (galectin-10) is not a dual function galectin with lysophospholipase activity but binds a lysophospholipase inhibitor in a novel structural fashion.

Steven J. Ackerman; Li Liu; Mark A. Kwatia; M. Savage; Demetres D. Leonidas; G.Jawahar Swaminathan; K. Ravi Acharya

Charcot-Leyden crystal (CLC) protein, initially reported to possess weak lysophospholipase activity, is still considered to be the eosinophils lysophospholipase, but it shows no sequence similarities to any known lysophospholipases. In contrast, CLC protein has moderate sequence similarity, conserved genomic organization, and near structural identity to members of the galectin superfamily, and it has been designated galectin-10. To definitively determine whether or not CLC protein is a lysophospholipase, we reassessed its enzymatic activity in peripheral blood eosinophils and an eosinophil myelocyte cell line (AML14.3D10). Antibody affinity chromatography was used to fully deplete CLC protein from eosinophil lysates. The CLC-depleted lysates retained their full lysophospholipase activity, and this activity could be blocked by sulfhydryl group-reactive inhibitors, N-ethylmaleimide andp-chloromercuribenzenesulfonate, previously reported to inhibit the eosinophil enzyme. In contrast, the affinity-purified CLC protein lacked significant lysophospholipase activity. X-ray crystallographic structures of CLC protein in complex with the inhibitors showed that p-chloromercuribenzenesulfonate bound CLC protein via disulfide bonds with Cys29 and with Cys57 near the carbohydrate recognition domain (CRD), whereas N-ethylmaleimide bound to the galectin-10 CRD via ring stacking interactions with Trp72, in a manner highly analogous to mannose binding to this CRD. Antibodies to rat pancreatic lysophospholipase identified a protein in eosinophil and AML14.3D10 cell lysates, comparable in size with human pancreatic lysophospholipase, which co-purifies in small quantities with CLC protein. Ligand blotting of human and murine eosinophil lysates with CLC protein as probe showed that it binds proteins also recognized by antibodies to pancreatic lysophospholipase. Our results definitively show that CLC protein is not one of the eosinophils lysophospholipases but that it does interact with eosinophil lysophospholipases and known inhibitors of this lipolytic activity.


Protein Science | 2005

Kinetic and crystallographic studies on 2‐(β‐D‐glucopyranosyl)‐5‐methyl‐1, 3, 4‐oxadiazole, ‐benzothiazole, and ‐benzimidazole, inhibitors of muscle glycogen phosphorylase b. Evidence for a new binding site

Evangelia D. Chrysina; Magda N. Kosmopoulou; Constantinos Tiraidis; Rozina Kardakaris; Nicolas Bischler; Demetres D. Leonidas; Zsuzsa Hadady; László Somsák; Tibor Docsa; Pál Gergely; Nikos G. Oikonomakos

In an attempt to identify leads that would enable the design of inhibitors with enhanced affinity for glycogen phosphorylase (GP), that might control hyperglycaemia in type 2 diabetes, three new analogs of β‐D‐glucopyranose, 2‐(β‐D‐glucopyranosyl)‐5‐methyl‐1, 3, 4‐oxadiazole, ‐benzothiazole, and ‐benzimidazole were assessed for their potency to inhibit GPb activity. The compounds showed competitive inhibition (with respect to substrate Glc‐1‐P) with Ki values of 145.2 (±11.6), 76 (±4.8), and 8.6 (±0.7) μM, respectively. In order to establish the mechanism of this inhibition, crystallographic studies were carried out and the structures of GPb in complex with the three analogs were determined at high resolution (GPb‐methyl‐oxadiazole complex, 1.92 Å; GPb‐benzothiazole, 2.10 Å; GPb‐benzimidazole, 1.93 Å). The complex structures revealed that the inhibitors can be accommodated in the catalytic site of T‐state GPb with very little change of the tertiary structure, and provide a rationalization for understanding variations in potency of the inhibitors. In addition, benzimidazole bound at the new allosteric inhibitor or indole binding site, located at the subunit interface, in the region of the central cavity, and also at a novel binding site, located at the protein surface, far removed (∼ 32 Å) from the other binding sites, that is mostly dominated by the nonpolar groups of Phe202, Tyr203, Val221, and Phe252.


Bioorganic & Medicinal Chemistry | 2009

Glucose-based spiro-isoxazolines: a new family of potent glycogen phosphorylase inhibitors.

Mahmoud Benltifa; Joseph M. Hayes; Sébastien Vidal; David Gueyrard; Peter G. Goekjian; Jean-Pierre Praly; Gregory Kizilis; Costas Tiraidis; Kyra-Melinda Alexacou; Evangelia D. Chrysina; Spyros E. Zographos; Demetres D. Leonidas; Georgios Archontis; Nikos G. Oikonomakos

A series of glucopyranosylidene-spiro-isoxazolines was prepared through regio- and stereoselective [3+2]-cycloaddition between the methylene acetylated exo-glucal and aromatic nitrile oxides. The deprotected cycloadducts were evaluated as inhibitors of muscle glycogen phosphorylase b. The carbohydrate-based family of five inhibitors displays K(i) values ranging from 0.63 to 92.5 microM. The X-ray structures of the enzyme-ligand complexes show that the inhibitors bind preferentially at the catalytic site of the enzyme retaining the less active T-state conformation. Docking calculations with GLIDE in extra-precision (XP) mode yielded excellent agreement with experiment, as judged by comparison of the predicted binding modes of the five ligands with the crystallographic conformations and the good correlation between the docking scores and the experimental free binding energies. Use of docking constraints on the well-defined positions of the glucopyranose moiety in the catalytic site and redocking of GLIDE-XP poses using electrostatic potential fit-determined ligand partial charges in quantum polarized ligand docking (QPLD) produced the best results in this regard.


Protein Science | 2009

High-resolution crystal structures of ribonuclease A complexed with adenylic and uridylic nucleotide inhibitors. Implications for structure-based design of ribonucleolytic inhibitors

Demetres D. Leonidas; Gayatri B. Chavali; Nikos G. Oikonomakos; Evangelia D. Chrysina; Magda N. Kosmopoulou; Metaxia Vlassi; Claire Frankling; K. Ravi Acharya

The crystal structures of bovine pancreatic ribonuclease A (RNase A) in complex with 3′,5′‐ADP, 2′,5′‐ADP, 5′‐ADP, U‐2′‐p and U‐3′‐p have been determined at high resolution. The structures reveal that each inhibitor binds differently in the RNase A active site by anchoring a phosphate group in subsite P1. The most potent inhibitor of all five, 5′‐ADP (Ki = 1.2 μM), adopts a syn conformation (in contrast to 3′,5′‐ADP and 2′,5′‐ADP, which adopt an anti), and it is the β‐ rather than the α‐phosphate group that binds to P1. 3′,5′‐ADP binds with the 5′‐phosphate group in P1 and the adenosine in the B2 pocket. Two different binding modes are observed in the two RNase A molecules of the asymmetric unit for 2′,5′‐ADP. This inhibitor binds with either the 3′ or the 5′ phosphate groups in subsite P1, and in each case, the adenosine binds in two different positions within the B2 subsite. The two uridilyl inhibitors bind similarly with the uridine moiety in the B1 subsite but the placement of a different phosphate group in P1 (2′ versus 3′) has significant implications on their potency against RNase A. Comparative structural analysis of the RNase A, eosinophil‐derived neurotoxin (EDN), eosinophil cationic protein (ECP), and human angiogenin (Ang) complexes with these and other phosphonucleotide inhibitors provides a wealth of information for structure‐based design of inhibitors specific for each RNase. These inhibitors could be developed to therapeutic agents that could control the biological activities of EDN, ECP, and ANG, which play key roles in human pathologies.


Protein Science | 2003

The binding of β- and γ-cyclodextrins to glycogen phosphorylase b: Kinetic and crystallographic studies

Nikos Pinotsis; Demetres D. Leonidas; Evangelia D. Chrysina; Nikos G. Oikonomakos; Irene M. Mavridis

A number of regulatory binding sites of glycogen phosphorylase (GP), such as the catalytic, the inhibitor, and the new allosteric sites are currently under investigation as targets for inhibition of hepatic glycogenolysis under high glucose concentrations; in some cases specific inhibitors are under evaluation in human clinical trials for therapeutic intervention in type 2 diabetes. In an attempt to investigate whether the storage site can be exploited as target for modulating hepatic glucose production, α‐, β‐, and γ‐cyclodextrins were identified as moderate mixed‐type competitive inhibitors of GPb (with respect to glycogen) with Ki values of 47.1, 14.1, and 7.4 mM, respectively. To elucidate the structural basis of inhibition, we determined the structure of GPb complexed with β‐ and γ‐cyclodextrins at 1.94 Å and 2.3 Å resolution, respectively. The structures of the two complexes reveal that the inhibitors can be accommodated in the glycogen storage site of T‐state GPb with very little change of the tertiary structure and provide a basis for understanding their potency and subsite specificity. Structural comparisons of the two complexes with GPb in complex with either maltopentaose (G5) or maltoheptaose (G7) show that β‐ andγ‐cyclodextrins bind in a mode analogous to the G5 and G7 binding with only some differences imposed by their cyclic conformations. It appears that the binding energy for stabilization of enzyme complexes derives from hydrogen bonding and van der Waals contacts to protein residues. The binding of α‐cyclodextrin and octakis (2,3,6‐tri‐O‐methyl)‐γ‐cyclodextrin was also investigated, but none of them was bound in the crystal; moreover, the latter did not inhibit the phosphorylase reaction.


ChemMedChem | 2012

The σ-hole phenomenon of halogen atoms forms the structural basis of the strong inhibitory potency of C5 halogen substituted glucopyranosyl nucleosides towards glycogen phosphorylase b.

Anastasia L. Kantsadi; Joseph M. Hayes; Stella Manta; Vicky T. Skamnaki; Christos Kiritsis; Anna-Maria G. Psarra; Zissis Koutsogiannis; Athina Dimopoulou; Stavroula Theofanous; Nikolaos Nikoleousakos; Panagiotis Zoumpoulakis; Maria Kontou; George Papadopoulos; Spyros E. Zographos; Dimitris Komiotis; Demetres D. Leonidas

C5 halogen substituted glucopyranosyl nucleosides (1‐(β‐D‐glucopyranosyl)‐5‐X‐uracil; X=Cl, Br, I) have been discovered as some of the most potent active site inhibitors of glycogen phosphorylase (GP), with respective Ki values of 1.02, 3.27, and 1.94 μM. The ability of the halogen atom to form intermolecular electrostatic interactions through the σ‐hole phenomenon rather than through steric effects alone forms the structural basis of their improved inhibitory potential relative to the unsubstituted 1‐(β‐D‐glucopyranosyl)uracil (Ki=12.39 μM), as revealed by X‐ray crystallography and modeling calculations exploiting quantum mechanics methods. Good agreement was obtained between kinetics results and relative binding affinities calculated by QM/MM‐PBSA methodology for various substitutions at C5. Ex vivo experiments demonstrated that the most potent derivative (X=Cl) toward purified GP has no cytotoxicity and moderate inhibitory potency at the cellular level. In accordance, ADMET property predictions were performed, and suggest decreased polar surface areas as a potential means of improving activity in the cell.


Mini-reviews in Medicinal Chemistry | 2010

Computation as a tool for glycogen phosphorylase inhibitor design.

Joseph M. Hayes; Demetres D. Leonidas

Glycogen phosphorylase is an important therapeutic target for the potential treatment of type 2 diabetes. The importance of computation in the search for potent, selective and drug-like glycogen phosphorylase inhibitors which may eventually lead to antihyperglycemic drugs is now firmly established. Acting solo or more effectively in combination with experiment in a multidisciplinary approach to structure based drug design, current day modeling methods are an effective means of reducing the time and money spent on costly experimental procedures. Glycogen phosphorylase is an allosteric protein with five different ligand binding sites, hence offering multiple opportunities for modulation of enzyme activity. However, the binding sites have their own individual characteristics, so that different modeling approaches may be more effective for each. This review is focused on advances in the modelling and design of new inhibitors of the enzyme aimed towards providing the reader with some useful hints towards more successful computer-aided inhibitor (drug) design targeting glycogen phosphorylase.

Collaboration


Dive into the Demetres D. Leonidas's collaboration.

Top Co-Authors

Avatar

Nikos G. Oikonomakos

Indian Institute of Technology Madras

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Magda N. Kosmopoulou

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Joseph M. Hayes

University of Central Lancashire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge