Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Demetrio A. da Silva Filho is active.

Publication


Featured researches published by Demetrio A. da Silva Filho.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Organic semiconductors: A theoretical characterization of the basic parameters governing charge transport

Jean-Luc Brédas; J. P. Calbert; Demetrio A. da Silva Filho; Jérôme Cornil

Organic semiconductors based on π-conjugated oligomers and polymers constitute the active elements in new generations of plastic (opto)electronic devices. The performance of these devices depends largely on the efficiency of the charge-transport processes; at the microscopic level, one of the major parameters governing the transport properties is the amplitude of the electronic transfer integrals between adjacent oligomer or polymer chains. Here, quantum-chemical calculations are performed on model systems to address the way transfer integrals between adjacent chains are affected by the nature and relative positions of the interacting units. Compounds under investigation include oligothienylenes, hexabenzocoronene, oligoacenes, and perylene. It is shown that the amplitude of the transfer integrals is extremely sensitive to the molecular packing. Interestingly, in contrast to conventional wisdom, specific arrangements can lead to electron mobilities that are larger than hole mobilities, which is, for instance, the case of perylene.


Journal of Chemical Physics | 2003

Three-dimensional band structure and bandlike mobility in oligoacene single crystals: A theoretical investigation

Yuan-Chung Cheng; R. Silbey; Demetrio A. da Silva Filho; J. P. Calbert; Jérôme Cornil; Jean-Luc Brédas

Quantum-chemical calculations coupled with a tight binding band model are used to study the charge carrier mobilities in oligoacene crystals. The transfer integrals for all nonzero interactions in four crystalline oligoacenes (naphthalene, anthracene, tetracene, and pentacene) were calculated, and then used to construct the excess electron and hole band structures of all four oligoacene crystals in the tight binding approximation. From these band structures, thermal-averaged velocity–velocity tensors in the constant-free-time and the constant-free-path approximations for all four materials were calculated at temperatures ranging from 2 to 500 K. The bandwidths for these oligoacenes were found to be of the order of 0.1–0.5 eV. Furthermore, comparison of the thermal-averaged velocity–velocity tensors with the experimental mobility data indicates that the simple band model is applicable for temperatures only up to about 150 K. A small-polaron band model is also considered, but the exponential band narrowing ...


Journal of the American Chemical Society | 2010

Tuning the Charge-Transport Parameters of Perylene Diimide Single Crystals via End and/or Core Functionalization: A Density Functional Theory Investigation

M. Carmen Ruiz Delgado; Eung-Gun Kim; Demetrio A. da Silva Filho; Jean-Luc Brédas

Perylene tetracarboxylic diimide (PTCDI) derivatives stand out as one of the most investigated families of air-stable n-type organic semiconductors for organic thin-film transistors. Here, we use density functional theory to illustrate how it is possible to control the charge-transport parameters of PTCDIs as a function of the type, number, and positions of the substituents. Specifically, two strategies of functionalization related to core and end substitutions are investigated. While end-substituted PTCDIs present the same functional molecular backbone, their molecular packing in the crystal significantly varies; as a consequence, this series of derivatives constitutes an ideal test bed to evaluate the models that describe charge-transport in organic semiconductors. Our results indicate that large bandwidths along with small effective masses can be obtained with the insertion of appropriate substituents on the nitrogens, in particular halogenated aromatic groups.


Journal of the American Chemical Society | 2009

Impact of Perfluorination on the Charge-Transport Parameters of Oligoacene Crystals

M. Carmen Ruiz Delgado; Kathryn R. Pigg; Demetrio A. da Silva Filho; Nadine E. Gruhn; Youichi Sakamoto; Toshiyasu Suzuki; Reyes Malavé Osuna; Juan Casado; Víctor Hernández; Juan T. López Navarrete; Nicolas G. Martinelli; Jérôme Cornil; Roel S. Sánchez-Carrera; Veaceslav Coropceanu; Jean-Luc Brédas

The charge-transport parameters of the perfluoropentacene and perfluorotetracene crystals are studied with a joint experimental and theoretical approach that combines gas-phase ultraviolet photoelectron spectroscopy and density functional theory. To gain a better understanding of the role of perfluorination, the results for perfluoropentacene and perfluorotetracene are compared to those for their parent oligoacenes, that is, pentacene and tetracene. Perfluorination is calculated to increase the ionization potentials and electron affinities by approximately 1 eV, which is expected to reduce significantly the injection barrier for electrons in organic electronics devices. Perfluorination also leads to significant changes in the crystalline packing, which greatly affects the electronic properties of the crystals and their charge-transport characteristics. The calculations predict large conduction and valence bandwidths and low hole and electron effective masses in the perfluoroacene crystals, with the largest mobilities expected along the pi-stacks. Perfluorination impacts as well both local and nonlocal vibrational couplings, whose strengths increase by a factor of about 2 with respect to the parent compounds.


Journal of Chemical Physics | 2004

A multimode analysis of the gas-phase photoelectron spectra in oligoacenes

M. Malagoli; Veaceslav Coropceanu; Demetrio A. da Silva Filho; Jean-Luc Brédas

We present a multimode vibrational analysis of the gas-phase ultraviolet photoelectron spectra of the first ionization in anthracene, tetracene, and pentacene, using electron-vibration constants computed at the density functional theory level. The first ionization of each molecule exhibits a high-frequency vibronic structure; it is shown that this regularly spaced feature is actually the consequence of the collective action of several vibrational modes rather than the result of the interaction with a single mode. We interpret this feature in terms of the missing mode effect. We also discuss the vibronic coupling constants and relaxation energies obtained from the fit of the photoelectron spectra with the linear vibronic model.


Applied Physics Letters | 2005

Shallow trap states in pentacene thin films from molecular sliding

Joo H. Kang; Demetrio A. da Silva Filho; Jean-Luc Brédas; X.-Y. Zhu

Petacene is one of the most promising organic semiconductors for thin-film transistors. Transport measurements in the past have established the presence of shallow traps but their origins have remained a mystery. Here we show that shallow traps in vapor-deposited crystalline pentacene thin films are due to local defects resulting from the sliding of pentacene molecules along their long molecular axis, while two-dimensional crystalline packing is maintained. Electronic structural calculation confirms that these sliding defects are shallow-charge traps with energies ⩽100meV above (below) the valence band maximum (conduction band minimum).


ChemPhysChem | 2009

Influence of intermolecular vibrations on the electronic coupling in organic semiconductors: the case of anthracene and perfluoropentacene.

Nicolas G. Martinelli; Yoann Olivier; Stavros Athanasopoulos; Mari‐Carmen Ruiz Delgado; Kathryn R. Pigg; Demetrio A. da Silva Filho; Roel S. Sánchez-Carrera; Elisabetta Venuti; Raffaele Guido Della Valle; Jean-Luc Brédas; David Beljonne; Jérôme Cornil

We have performed classical molecular dynamics simulations and quantum-chemical calculations on molecular crystals of anthracene and perfluoropentacene. Our goal is to characterize the amplitudes of the room-temperature molecular displacements and the corresponding thermal fluctuations in electronic transfer integrals, which constitute a key parameter for charge transport in organic semiconductors. Our calculations show that the thermal fluctuations lead to Gaussian-like distributions of the transfer integrals centered around the values obtained for the equilibrium crystal geometry. The calculated distributions have been plugged into Monte-Carlo simulations of hopping transport, which show that lattice vibrations impact charge transport properties to various degrees depending on the actual crystal structure.


Philosophical Transactions of the Royal Society A | 2007

Hole-vibronic coupling in oligothiophenes: impact of backbone torsional flexibility on relaxation energies

Demetrio A. da Silva Filho; Veaceslav Coropceanu; Denis Fichou; Nadine E. Gruhn; Tonja G. Bill; Johannes Gierschner; Jérôme Cornil; Jean-Luc Brédas

Density functional theory calculations together with highly resolved gas-phase ultraviolet photoelectron spectroscopy have been applied to oligothiophene chains with up to eight thiophene rings. One of the important parameters governing the charge transport properties in the condensed phase is the amount of energy relaxation upon ionization. Here, we investigate the impact on this parameter of the backbone flexibility present in oligothiophenes as a result of inter-ring torsional motions. With respect to oligoacenes that are characterized by a coplanar and rigid backbone, the torsional flexibility in oligothiophenes adds to the relaxation energy and leads to the broadening of the first ionization peak, making its analysis more complex.


ChemPhysChem | 2010

Theoretical Characterization of Charge Transport in One‐Dimensional Collinear Arrays of Organic Conjugated Molecules

Lucas Viani; Yoann Olivier; Stavros Athanasopoulos; Demetrio A. da Silva Filho; Jürg Hulliger; Jean-Luc Brédas; Johannes Gierschner; Jérôme Cornil

A great deal of interest has recently focused on host-guest systems consisting of one-dimensional collinear arrays of conjugated molecules encapsulated in the channels of organic or inorganic matrices. Such architectures allow for controlled charge and energy migration processes between the interacting guest molecules and are thus attractive in the field of organic electronics. In this context, we characterize here at a quantum-chemical level the molecular parameters governing charge transport in the hopping regime in 1D arrays built with different types of molecules. We investigate the influence of several parameters (such as the symmetry of the molecule, the presence of terminal substituents, and the molecular size) and define on that basis the molecular features required to maximize the charge carrier mobility within the channels. In particular, we demonstrate that a strong localization of the molecular orbitals in push-pull compounds is generally detrimental to the charge transport properties.


Journal of Chemical Physics | 2011

Exciton dissociation and charge carrier recombination processes in organic semiconductors.

Luiz Antonio Ribeiro; Pedro Henrique de Oliveira Neto; Wiliam Ferreira da Cunha; Luiz F. Roncaratti; Ricardo Gargano; Demetrio A. da Silva Filho; Geraldo Magela e Silva

Exciton dissociation and charge recombination processes in organic semiconductors, with thermal effects taken into account, are described in this paper. Here, we analyzed the mechanisms of polaron-excitons dissociation into free charge carriers and the consequent recombination of those carriers under thermal effects on two parallel π-conjugated polymers chains electronically coupled. Our results suggest that exciton dissociation in a single molecule give rise to localized, polaron-like charge carrier. Besides, we concluded that in the case of interchain processes, the bimolecular polaron recombination does not lead to an usual exciton state. Rather, this type of recombination leads to an oscillating dipole between the two chains. The recombination time obtained here for these processes are in agreement with the experimental results. Finally, our results show that temperature effects are essential to the relaxation process leading to polaron formation in a single chain, as in the absence of temperature, this process was not observed. In the case of two chains, we conclude that temperature effects also help the bimolecular recombination process, as observed experimentally.

Collaboration


Dive into the Demetrio A. da Silva Filho's collaboration.

Top Co-Authors

Avatar

Jean-Luc Brédas

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Veaceslav Coropceanu

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ailton Cavalli

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Piotr Milart

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge