Demetrios K. Vassilatis
Academy of Athens
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Demetrios K. Vassilatis.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Demetrios K. Vassilatis; John G. Hohmann; Hongkui Zeng; Fusheng Li; Jane E. Ranchalis; Marty T. Mortrud; Analisa Brown; Stephanie S. Rodriguez; John R. Weller; Abbie C. Wright; John E. Bergmann; George A. Gaitanaris
Diverse members of the G protein-coupled receptor (GPCR) superfamily participate in a variety of physiological functions and are major targets of pharmaceutical drugs. Here we report that the repertoire of GPCRs for endogenous ligands consists of 367 receptors in humans and 392 in mice. Included here are 26 human and 83 mouse GPCRs not previously identified. A direct comparison of GPCRs in the two species reveals an unexpected level of orthology. The evolutionary preservation of these molecules argues against functional redundancy among highly related receptors. Phylogenetic analyses cluster 60% of GPCRs according to ligand preference, allowing prediction of ligand types for dozens of orphan receptors. Expression profiling of 100 GPCRs demonstrates that most are expressed in multiple tissues and that individual tissues express multiple GPCRs. Over 90% of GPCRs are expressed in the brain. Strikingly, however, the profiles of most GPCRs are unique, yielding thousands of tissue- and cell-specific receptor combinations for the modulation of physiological processes.
The Journal of Neuroscience | 2007
Heather M. Dungan; Michelle L. Gottsch; Hongkui Zeng; Alexander Gragerov; John E. Bergmann; Demetrios K. Vassilatis; Donald K. Clifton; Robert A. Steiner
The Kiss1 gene codes for kisspeptin, which binds to GPR54, a G-protein-coupled receptor. Kisspeptin and GPR54 are expressed in discrete regions of the forebrain, and they have been implicated in the neuroendocrine regulation of reproduction. Kiss1-expressing neurons are thought to regulate the secretion of gonadotropin-releasing hormone (GnRH) and thus coordinate the estrous cycle in rodents; however, the precise role of kisspeptin–GPR54 signaling in the regulation of gonadotropin secretion is unknown. In this study, we used female mice with deletions in the GPR54 gene [GPR54 knock-outs (KOs)] to test the hypothesis that kisspeptin–GPR54 signaling provides the drive necessary for tonic GnRH/luteinizing hormone (LH) release. We predicted that tonic GnRH/LH secretion would be disrupted in GPR54 KOs and that such animals would be incapable of showing a compensatory rise in LH secretion after ovariectomy. As predicted, we found that GPR54 KO mice do not exhibit a postovariectomy rise in LH, suggesting that tonic GnRH secretion is disrupted in the absence of kisspeptin–GPR54 signaling. We also postulated that kisspeptin–GPR54 signaling is critical for the generation of the estradiol (E)-induced GnRH/LH surge and thus E should be incapable of inducing an LH surge in the absence of GPR54. However, we found that E induced Fos expression in GnRH neurons and produced a GnRH-dependent LH surge in GPR54 KOs. Thus, in mice, kisspeptin–GPR54 signaling is required for the tonic stimulation of GnRH/LH secretion but is not required for generating the E-induced GnRH/LH surge.
Lancet Neurology | 2011
Owen A. Ross; Alexandra I. Soto-Ortolaza; Michael G. Heckman; Jan O. Aasly; Nadine Abahuni; Grazia Annesi; Justin A. Bacon; Soraya Bardien; Maria Bozi; Alexis Brice; Laura Brighina; Christine Van Broeckhoven; Jonathan Carr; Marie Christine Chartier-Harlin; Efthimios Dardiotis; Dennis W. Dickson; Nancy N. Diehl; Alexis Elbaz; Carlo Ferrarese; Alessandro Ferraris; Brian K. Fiske; J. Mark Gibson; Rachel A. Gibson; Georgios M. Hadjigeorgiou; Nobutaka Hattori; John P. A. Ioannidis; Barbara Jasinska-Myga; Beom S. Jeon; Yun Joong Kim; Christine Klein
BACKGROUND Background The leucine-rich repeat kinase 2 gene (LRRK2) harbours highly penetrant mutations that are linked to familial parkinsonism. However, the extent of its polymorphic variability in relation to risk of Parkinsons disease (PD) has not been assessed systematically. We therefore assessed the frequency of LRRK2 exonic variants in individuals with and without PD, to investigate the role of the variants in PD susceptibility. METHODS LRRK2 was genotyped in patients with PD and controls from three series (white, Asian, and Arab-Berber) from sites participating in the Genetic Epidemiology of Parkinsons Disease Consortium. Genotyping was done for exonic variants of LRRK2 that were identified through searches of literature and the personal communications of consortium members. Associations with PD were assessed by use of logistic regression models. For variants that had a minor allele frequency of 0·5% or greater, single variant associations were assessed, whereas for rarer variants information was collapsed across variants. FINDINGS 121 exonic LRRK2 variants were assessed in 15 540 individuals: 6995 white patients with PD and 5595 controls, 1376 Asian patients and 962 controls, and 240 Arab-Berber patients and 372 controls. After exclusion of carriers of known pathogenic mutations, new independent risk associations were identified for polymorphic variants in white individuals (M1646T, odds ratio 1·43, 95% CI 1·15-1·78; p=0·0012) and Asian individuals (A419V, 2·27, 1·35-3·83; p=0·0011). A protective haplotype (N551K-R1398H-K1423K) was noted at a frequency greater than 5% in the white and Asian series, with a similar finding in the Arab-Berber series (combined odds ratio 0·82, 0·72-0·94; p=0·0043). Of the two previously reported Asian risk variants, G2385R was associated with disease (1·73, 1·20-2·49; p=0·0026), but no association was noted for R1628P (0·62, 0·36-1·07; p=0·087). In the Arab-Berber series, Y2189C showed potential evidence of risk association with PD (4·48, 1·33-15·09; p=0·012). INTERPRETATION The results for LRRK2 show that several rare and common genetic variants in the same gene can have independent effects on disease risk. LRRK2, and the pathway in which it functions, is important in the cause and pathogenesis of PD in a greater proportion of patients with this disease than previously believed. These results will help discriminate those patients who will benefit most from therapies targeted at LRRK2 pathogenic activity. FUNDING Michael J Fox Foundation and National Institutes of Health.
Current Topics in Medicinal Chemistry | 2014
Evanthia Lionta; George M. Spyrou; Demetrios K. Vassilatis; Zoe Cournia
Structure-based drug discovery (SBDD) is becoming an essential tool in assisting fast and cost-efficient lead discovery and optimization. The application of rational, structure-based drug design is proven to be more efficient than the traditional way of drug discovery since it aims to understand the molecular basis of a disease and utilizes the knowledge of the three-dimensional structure of the biological target in the process. In this review, we focus on the principles and applications of Virtual Screening (VS) within the context of SBDD and examine different procedures ranging from the initial stages of the process that include receptor and library pre-processing, to docking, scoring and post-processing of topscoring hits. Recent improvements in structure-based virtual screening (SBVS) efficiency through ensemble docking, induced fit and consensus docking are also discussed. The review highlights advances in the field within the framework of several success studies that have led to nM inhibition directly from VS and provides recent trends in library design as well as discusses limitations of the method. Applications of SBVS in the design of substrates for engineered proteins that enable the discovery of new metabolic and signal transduction pathways and the design of inhibitors of multifunctional proteins are also reviewed. Finally, we contribute two promising VS protocols recently developed by us that aim to increase inhibitor selectivity. In the first protocol, we describe the discovery of micromolar inhibitors through SBVS designed to inhibit the mutant H1047R PI3Kα kinase. Second, we discuss a strategy for the identification of selective binders for the RXRα nuclear receptor. In this protocol, a set of target structures is constructed for ensemble docking based on binding site shape characterization and clustering, aiming to enhance the hit rate of selective inhibitors for the desired protein target through the SBVS process.
Movement Disorders | 2012
Helen Michelakakis; Georgia Xiromerisiou; Efthimios Dardiotis; Maria Bozi; Demetrios K. Vassilatis; Persa‐Maria Kountra; Gianna Patramani; Marina Moraitou; Dimitra Papadimitriou; Eleftherios Stamboulis; Leonidas Stefanis; Elias Zintzaras; Georgios M. Hadjigeorgiou
Lysosomal protein 2 (LIMP2), the product of the scavenger receptor class B member 2 (SCARB2) gene, is a ubiquitously expressed transmembrane protein that is the mannose‐6‐phosphate–independent receptor for glucocerebrosidase (β‐GCase); a deficiency in this protein causes Gaucher disease. Several studies have shown a link between mutations in the β‐GCase gene and diseases characterized clinically by Parkinsonism and by the presence of Lewy body–related pathology. We hypothesized that genetic variants in the SCARB2 gene could be risk factors for Parkinsons disease (PD). A candidate‐gene study of 347 Greek patients with sporadic PD and 329 healthy controls was conducted to investigate the association between 5 polymorphisms in the SCARB2 gene (rs6824953, rs6825004, rs4241591, rs9991821, and rs17234715) and the development of PD. The single‐locus analysis for the 5 polymorphisms revealed an association only for the rs6825004 polymorphism: the generalized odds ratio (ORG) was 0.68 (95% confidence interval [CI], 0.51–0.90), and the OR for the allelic test was OR = 0.71 (95% CI, 0.56–0.90). Haplotype analysis showed an association for the GCGGT haplotype (P < .01). Our study supports a genetic contribution of the SCARB2 locus to PD; future studies in larger cohorts are necessary to verify this finding.
Neurobiology of Aging | 2010
Evangelos Sotiriou; Demetrios K. Vassilatis; Miquel Vila; Leonidas Stefanis
Classical pathological signs of Parkinsons disease (PD) include loss of dopaminergic neurons in substantia nigra (SN) and noradrenergic neurons in locus coeruleus (LC), and deposition of Lewy bodies rich in the presynaptic protein alpha-synuclein (ASYN). Mammalian genetic models based on ASYN overexpression, however, have generally not reproduced the profound dopaminergic deficit of PD and do not display classical PD phenotypes. In the current study we examined these catecholaminergic systems in transgenic (Tg) mice expressing the A53T mutant of human ASYN under the Prion promoter. Surprisingly we detected a substantial reduction in norepinephrine (NE), but not dopamine (DA), levels in spinal cord, olfactory bulb and striatum of aged (15-month-old), but not young (4-month-old) transgenic compared to control mice. In spinal cord and olfactory bulb of 15-month-old Tg mice there was an age-dependent decrease in tyrosine hydroxylase (TH) protein levels, which in spinal cord was accompanied by a decrease in TH-positive terminals detected by immunohistochemistry. There was no difference in the number of TH-positive neuron cell bodies in SN or LC between Tg and control mice. We conclude that aberrant ASYN, expressed in both SN and LC, induces preferential degeneration of noradrenergic terminals. These observations suggest that in mice the NE may be more vulnerable than the DA system to the toxic effects of aberrant alpha-synuclein, and are in line with the major damage to the NE system that occurs in patients with PD.
Neurobiology of Aging | 2014
Michael G. Heckman; Alexis Elbaz; Alexandra I. Soto-Ortolaza; Daniel J. Serie; Jan O. Aasly; Grazia Annesi; Georg Auburger; Justin A. Bacon; Magdalena Boczarska-Jedynak; Maria Bozi; Laura Brighina; Marie Christine Chartier-Harlin; Efthimios Dardiotis; Alain Destée; Carlo Ferrarese; Alessandro Ferraris; Brian K. Fiske; Suzana Gispert; Georgios M. Hadjigeorgiou; Nobutaka Hattori; John P. A. Ioannidis; Barbara Jasinska-Myga; Beom S. Jeon; Yun Joong Kim; Christine Klein; Rejko Krüger; Elli Kyratzi; Chin-Hsien Lin; Katja Lohmann; Marie-Anne Loriot
The best validated susceptibility variants for Parkinsons disease are located in the α-synuclein (SNCA) and microtubule-associated protein tau (MAPT) genes. Recently, a protective p.N551K-R1398H-K1423K haplotype in the leucine-rich repeat kinase 2 (LRRK2) gene was identified, with p.R1398H appearing to be the most likely functional variant. To date, the consistency of the protective effect of LRRK2 p.R1398H across MAPT and SNCA variant genotypes has not been assessed. To address this, we examined 4 SNCA variants (rs181489, rs356219, rs11931074, and rs2583988), the MAPT H1-haplotype-defining variant rs1052553, and LRRK2 p.R1398H (rs7133914) in Caucasian (n = 10,322) and Asian (n = 2289) series. There was no evidence of an interaction of LRRK2 p.R1398H with MAPT or SNCA variants (all p ≥ 0.10); the protective effect of p.R1398H was observed at similar magnitude across MAPT and SNCA genotypes, and the risk effects of MAPT and SNCA variants were observed consistently for LRRK2 p.R1398H genotypes. Our results indicate that the association of LRRK2 p.R1398H with Parkinsons disease is independent of SNCA and MAPT variants, and vice versa, in Caucasian and Asian populations.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Alexander Gragerov; Kyoji Horie; Maria N. Pavlova; Linda Madisen; Hongkui Zeng; Galina Gragerova; Alex Rhode; Io Dolka; Patricia Roth; Amanda Ebbert; Stephanie Moe; Christopher Navas; Eric Finn; John E. Bergmann; Demetrios K. Vassilatis; George N. Pavlakis; George A. Gaitanaris
We describe the construction of a large-scale, orderly assembly of mutant ES cells, generated with retroviral insertions and having mutational coverage in >90% of mouse genes. We also describe a method for isolating ES cell clones with mutations in specific genes of interest from this library. This approach, which combines saturating random mutagenesis with targeted selection of mutations in the genes of interest, was successfully applied to the gene families of G protein-coupled receptors (GPCRs) and nuclear receptors. Mutant mouse strains in 60 different GPCRs were generated. Applicability of the technique for the GPCR genes, which on average represent fairly small targets for insertional mutagenesis, indicates the general utility of our approach for the rest of the genome. The method also allows for increased scale and automation for the large-scale production of mutant mice, which could substantially expedite the functional characterization of the mouse genome.
Movement Disorders | 2013
Michael G. Heckman; Alexandra I. Soto-Ortolaza; Jan O. Aasly; Nadine Abahuni; Grazia Annesi; Justin A. Bacon; Soraya Bardien; Maria Bozi; Alexis Brice; Laura Brighina; Jonathan Carr; Marie Christine Chartier-Harlin; Efthimios Dardiotis; Dennis W. Dickson; Nancy N. Diehl; Alexis Elbaz; Carlo Ferrarese; Brian K. Fiske; J. Mark Gibson; Rachel A. Gibson; Georgios M. Hadjigeorgiou; Nobutaka Hattori; John P. A. Ioannidis; Magdalena Boczarska-Jedynak; Barbara Jasinska-Myga; Beom S. Jeon; Yun Joong Kim; Christine Klein; Rejko Krüger; Elli Kyratzi
Variants within the leucine‐rich repeat kinase 2 gene are recognized as the most frequent genetic cause of Parkinsons disease. Leucine‐rich repeat kinase 2 variation related to disease susceptibility displays many features that reflect the nature of complex, late‐onset sporadic disorders like Parkinsons disease.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Athanasios D. Spathis; Xenophon Asvos; Despina Ziavra; Theodoros Karampelas; Stavros Topouzis; Zoe Cournia; Xiaobing Qing; Pavlos Alexakos; Lisa M. Smits; Christina Dalla; Hardy J. Rideout; Jens Christian Schwamborn; Constantin Tamvakopoulos; Demosthenes Fokas; Demetrios K. Vassilatis
Significance In Parkinson’s disease (PD), dopamine (DA)-producing neurons gradually degenerate, leading to DA deficiency and to the main symptoms of PD. Current medications do not impede neurodegeneration, but relieve symptoms by replenishing DA; however, their chronic use causes serious side effects. We targeted a protein required for the development and function of DA neurons by designing a chemical compound that, by activating this protein, increases DA and improves symptoms without current treatment side effects while simultaneously preventing neuron loss in PD mice. Our findings point to a monotherapy that can both impede PD progression and concurrently improve symptoms of PD. Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic (DAergic) neurons in the substantia nigra and the gradual depletion of dopamine (DA). Current treatments replenish the DA deficit and improve symptoms but induce dyskinesias over time, and neuroprotective therapies are nonexistent. Here we report that Nuclear receptor-related 1 (Nurr1):Retinoid X receptor α (RXRα) activation has a double therapeutic potential for PD, offering both neuroprotective and symptomatic improvement. We designed BRF110, a unique in vivo active Nurr1:RXRα-selective lead molecule, which prevents DAergic neuron demise and striatal DAergic denervation in vivo against PD-causing toxins in a Nurr1-dependent manner. BRF110 also protects against PD-related genetic mutations in patient induced pluripotent stem cell (iPSC)-derived DAergic neurons and a genetic mouse PD model. Remarkably, besides neuroprotection, BRF110 up-regulates tyrosine hydroxylase (TH), aromatic l-amino acid decarboxylase (AADC), and GTP cyclohydrolase I (GCH1) transcription; increases striatal DA in vivo; and has symptomatic efficacy in two postneurodegeneration PD models, without inducing dyskinesias on chronic daily treatment. The combined neuroprotective and symptomatic effects of BRF110 identify Nurr1:RXRα activation as a potential monotherapeutic approach for PD.