Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Demetrius Moskophidis is active.

Publication


Featured researches published by Demetrius Moskophidis.


Journal of Virology | 2001

Critical Role for Alpha/Beta and Gamma Interferons in Persistence of Lymphocytic Choriomeningitis Virus by Clonal Exhaustion of Cytotoxic T Cells

Rong Ou; Shenghua Zhou; Lei Huang; Demetrius Moskophidis

ABSTRACT Under conditions of high antigenic load during infection with invasive lymphocytic choriomeningitis virus (LCMV) strains, virus can persist by selective clonal exhaustion of antigen-specific CD8+ T cells. In this work we studied the down-regulation of the virus-specific CD8+-T-cell response during a persistent infection of adult mice, with particular emphasis on the contribution of the interferon response in promoting host defense. Studies were conducted by infecting mice deficient in receptors for type I (alpha/beta interferon [IFN-α/β]), type II (IFN-γ), and both type I and II IFNs with LCMV isolates that vary in their capacity to induce T-cell exhaustion. The main conclusions of this study are as follows. (i) IFNs play a critical role in LCMV infection by reducing viral loads in the initial stages of infection and thus modifying both the extent of CD8+-T-cell exhaustion and the course of infection. The importance of IFNs in this context varies with the biological properties of the LCMV strain. (ii) An inverse correlation exists between antigen persistence and responsiveness of virus-specific CD8+ T cells. This results in distinct programs of activation or tolerance (functional unresponsiveness and/or physical elimination of antigen-specific cells) during acute and chronic virus infections, respectively. (iii) A successful immune response associated with definitive viral clearance requires an appropriate balance between cellular and humoral components of the immune system. We discuss the role of IFNs in influencing virus-specific T cells that determine the outcome of persistent infections.


Journal of Virology | 2000

The Role of Alpha/Beta and Gamma Interferons in Development of Immunity to Influenza A Virus in Mice

Graeme E. Price; Anna Gaszewska-Mastarlarz; Demetrius Moskophidis

ABSTRACT During influenza virus infection innate and adaptive immune defenses are activated to eliminate the virus and thereby bring about recovery from illness. Both arms of the adaptive immune system, antibody neutralization of free virus and termination of intracellular virus replication by antiviral cytotoxic T cells (CTLs), play pivotal roles in virus elimination and protection from disease. Innate cytokine responses, such as alpha/beta interferon (IFN-α/β) or IFN-γ, can have roles in determining the rate of virus replication in the initial stages of infection and in shaping the initial inflammatory and downstream adaptive immune responses. The effect of these cytokines on the replication of pneumotropic influenza A virus in the respiratory tract and in the regulation of adaptive antiviral immunity was examined after intranasal infection of mice with null mutations in receptors for IFN-α/β, IFN-γ, and both IFNs. Virus titers in the lungs of mice unable to respond to IFNs were not significantly different from congenic controls for both primary and secondary infection. Likewise the mice were comparably susceptible to X31 (H3N2) influenza virus infection. No significant disruption to the development of normal antiviral CTL or antibody responses was observed. In contrast, mice bearing the disrupted IFN-α/β receptor exhibited accelerated kinetics and significantly higher levels of neutralizing antibody activity during primary or secondary heterosubtypic influenza virus infection. Thus, these observations reveal no significant contribution for IFN-controlled pathways in shaping acute or memory T-cell responses to pneumotropic influenza virus infection but do indicate some role for IFN-α/β in the regulation of antibody responses. Recognizing the pivotal role of CTLs and antibody in virus clearance, it is reasonable to assume a redundancy in IFN-mediated antiviral effects in pulmonary influenza. However, IFN-α/β seems to be a valid factor in determining tissue tropism and replicative rates of highly virulent influenza virus strains as reported previously by others, and this aspect is discussed here.


Nature Medicine | 2004

TCR affinity and negative regulation limit autoimmunity

Matthew A. Gronski; Jonathan M. Boulter; Demetrius Moskophidis; Linh T. Nguyen; Kaisa Holmberg; Alisha R. Elford; Elissa K. Deenick; Hee O Kim; Josef M. Penninger; Bernhard Odermatt; Awen Myfanwy Gallimore; Nicholas R. J. Gascoigne; Pamela S. Ohashi

Autoimmune diseases are often mediated by self-reactive T cells, which must be activated to cause immunopathology. One mechanism, known as molecular mimicry, proposes that self-reactive T cells may be activated by pathogens expressing crossreactive ligands. Here we have developed a model to investigate how the affinity of the T-cell receptor (TCR) for the activating agent influences autoimmunity. Our model shows that an approximately fivefold difference in the TCR affinity for the activating ligand results in a 50% reduction in the incidence of autoimmunity. A reduction in TCR-ligand affinity to approximately 20 times lower than normal does not induce autoimmunity despite the unexpected induction of cytotoxic T lymphocytes (CTLs) and insulitis. Furthermore, in the absence of a key negative regulatory molecule, Cbl-b, 100% of mice develop autoimmunity upon infection with viruses encoding the lower-affinity ligand. Therefore, autoimmune disease is sensitive both to the affinity of the activating ligand and to normal mechanisms that negatively regulate the immune response.


Journal of Cellular Biochemistry | 2002

Targeted disruption of hsf1 leads to lack of thermotolerance and defines tissue-specific regulation for stress-inducible Hsp molecular chaperones.

Yan Zhang; Lei Huang; Jing Zhang; Demetrius Moskophidis; Nahid F. Mivechi

The rapid synthesis of heat shock proteins (Hsps) in cells subjected to environmental challenge is controlled by heat shock transcription factor‐1 (Hsf1). Regulation of Hsps by Hsf1 is highly complex and, in the whole organism, remains largely unexplored. In this study, we have used mouse embryo fibroblasts and bone marrow progenitor cells from hsf1−/− mice as well as hsp70.3‐lacZ knock‐in mice bred on the hsf1deficient genetic background (hsf1−/−‐hsp70.3+/−‐lacZ), to further elucidate the function of Hsf1 and its participation as a transcriptional activator of Hsp70 synthesis under normal or heat‐induced stress conditions in vitro and in vivo. The results revealed that heat‐induced Hsp70 expression in mouse tissue is entirely controlled by Hsf1, whereas its activity is not required for tissue‐specific constitutive Hsp70 expression. We further demonstrate that Hsf1 is critical for maintaining cellular integrity after heat stress and that cells from hsf1−/− mice lack the ability to develop thermotolerance. This deficiency is explained by the elimination of stress‐inducible Hsp70 and Hsp25 response in the absence of Hsf1 activity, leading to a lack of Hsp‐mediated inhibition of apoptotic cell death via both caspase‐dependent and caspase‐independent pathways. The pivotal role of the Hsf1 transactivator in regulating rapid synthesis of Hsps as a critical cellular defense mechanism against environmental stress‐induced damage is underlined. J. Cell. Biochem. 86: 376–393, 2002.


Molecular and Cellular Biology | 2001

Insights into Regulation and Function of the Major Stress-Induced hsp70 Molecular Chaperone In Vivo: Analysis of Mice with Targeted Gene Disruption of the hsp70.1 or hsp70.3 Gene

Lei Huang; Nahid F. Mivechi; Demetrius Moskophidis

ABSTRACT The murine hsp70 gene family includes the evolutionarily conserved hsp70.1 andhsp70.3 genes, which are the major proteins induced by heat and other stress stimuli.hsp70.1 andhsp70.3 encode identical proteins which protect cells and facilitate their recovery from stress-induced damage. While the hsp70 gene family has been widely studied and the roles of the proteins it encodes as molecular chaperones in a range of human pathologies are appreciated, little is known about the developmental regulation of hsp70.1 andhsp70.3 expression and the in vivo biological function of their products. To directly study the physiological role of these proteins in vivo, we have generated mice deficient in heat shock protein 70 (hsp70) by replacing thehsp70.1 orhsp70.3 gene with an in-frame β-galactosidase sequence. We report here that the expression ofhsp70.1 andhsp70.3 is developmentally regulated at the transcriptional level, and an overlapping expression pattern for both genes is observed during embryo development and in the tissues of adult mice. hsp70.1 −/− orhsp70.3 −/− mice are viable and fertile, with no obvious morphological abnormalities. In late embryonic stage and adult mice, both genes are expressed constitutively in tissues exposed directly to the environment (the epidermis and cornea) and in certain internal organs (the epithelium of the tongue, esophagus, and forestomach, and the kidney, bladder, and hippocampus). Exposure of mice to thermal stress results in the rapid induction and expression of hsp70, especially in organs not constitutively expressing hsp70 (the liver, pancreas, heart, lung, adrenal cortex, and intestine). Despite functional compensation in the single-gene-deficient mice by the intact homologous gene (i.e.,hsp70.3 inhsp70.1 −/− mice and vice versa), a marked reduction in hsp70 protein expression was observed in tissues under both normal and heat stress conditions. At the cellular level, inactivation of hsp70.1 orhsp70.3 resulted in deficient maintenance of acquired thermotolerance and increased sensitivity to heat stress-induced apoptosis. The additive or synergistic effects exhibited by coexpression of both hsp70 genes, and the evolutionary significance of the presence of both hsp70genes, is hence underlined.


Oncogene | 2007

Selective suppression of lymphomas by functional loss of Hsf1 in a p53-deficient mouse model for spontaneous tumors

Jin Na Min; Lei Huang; Drazen B. Zimonjic; Demetrius Moskophidis; Mivechi Nf

A hallmark in the pathogenesis of cancer is the increased expression of heat shock proteins (Hsps) and other molecular chaperones observed in many tumor types, which is considered to be an adaptive response to enhance tumor cell survival. Heat shock transcription factor 1 (Hsf1) is a major transactivator of Hsp induction and has been proposed to affect tumor initiation and progression, regulating expression of Hsps and other molecular targets. In this report, we provide direct in vivo evidence that Hsf1 plays a critical role in the evolution of spontaneous tumors arising in p53−/− mice. Thus, loss of Hsf1 function did not prolong tumor-free survival, but surprisingly altered the spectrum of tumors that arose in p53−/− mice. Tumor development is rapid in p53−/− mice, which predominantly (about 70%) succumb to lymphomas. In contrast, hsf1−/−p53−/− mice rarely develop lymphomas (<8%), but succumb to other tumor types including testicular carcinomas and soft tissue sarcomas. Our findings suggest that an increase in p53-independent apoptotic cell death in association with altered cytokine signaling and suppressed production of inflammatory factors in hsf1−/− mice may contribute to selective lymphoma suppression. In conclusion, the data presented here link the loss of Hsf1-dependent function to decreased susceptibility to spontaneous lymphomagenesis, which may have implications for cancer prevention and therapy.


Journal of Virology | 2002

Critical Role for Perforin-, Fas/FasL-, and TNFR1-Mediated Cytotoxic Pathways in Down-Regulation of Antigen-Specific T Cells during Persistent Viral Infection

Shenghua Zhou; Rong Ou; Lei Huang; Demetrius Moskophidis

ABSTRACT Viral persistence following infection with invasive strains of lymphocytic choriomeningitis virus (LCMV) can be achieved by selective down-regulation of virus-specific T lymphocytes. High viral burden in the onset of infection drives responding cells into functional unresponsiveness (anergy) that can be followed by their physical elimination. In this report, we studied down-regulation of the virus-specific CD8+-T-cell response during persistent infection of adult mice with LCMV, with emphasis on the role of perforin-, Fas/FasL-, or tumor necrosis factor receptor 1 (TNFR1)-mediated cytolysis in regulating T-cell homeostasis. The results reveal that the absence of perforin, Fas-ligand, or TNFR1 has no significant effect on the kinetics of proliferation and functional inactivation of virus-specific CD8+ T cells in the onset of chronic LCMV infection. However, these molecules play a critical role in the homeostatic regulation of T cells, influencing the longevity of the virus-specific CD8+-T-cell population once it has become anergic. Thus, CD8+ T cells specific to the dominant LCMV NP396–404 epitope persist in an anergic state for at least 70 days in perforin-, FasL-, or TNFR1-deficient mice, but they were eliminated by day 30 in C57BL/6 controls. These effects were additive as shown by a deficit of apoptotic death of NP396–404 peptide-specific CD8+ T cells in mice lacking both perforin and TNFR1. This suggests a role for perforin-, FasL-, and TNFR1-mediated pathways in down-regulation of the antiviral T cell response during persistent viral infection by determining the fate of antigen-specific T cells. Moreover, virus-specific anergic CD8+ T cells in persistently infected C57BL/6 mice contain higher levels of Bcl-2 and Bcl-XL than functionally intact T cells generated during acute LCMV infection. In the case of proapoptotic factors, Bax expression did not differ between T-cell populations and Bad was below the limit of detection in all samples. As expression of the Bcl-2 family members controls susceptibility to apoptosis, this finding may provide a molecular basis for the survival of anergic cells under conditions of prolonged antigen stimulation.


Journal of Virology | 2004

Differential Tissue-Specific Regulation of Antiviral CD8+ T-Cell Immune Responses during Chronic Viral Infection

Shenghua Zhou; Rong Ou; Lei Huang; Graeme E. Price; Demetrius Moskophidis

ABSTRACT The hallmarks of the immune response to viral infections are the expansion of antigen-specific CD8+ cytotoxic T lymphocytes (CTLs) after they encounter antigen-presenting cells in the lymphoid tissues and their subsequent redistribution to nonlymphoid tissues to deal with the pathogen. Control mechanisms exist within CTL activation pathways to prevent inappropriate CTL responses against disseminating infections with a broad distribution of pathogen in host tissues. This is demonstrated during overwhelming infection with the noncytolytic murine lymphocytic choriomeningitis virus, in which clonal exhaustion (anergy and/or deletion) of CTLs prevents immune-mediated pathology but allows persistence of the virus. The mechanism by which the immune system determines whether or not to mount a full response to such infections is unknown. Here we present data showing that the initial encounter of specific CTLs with infected cells in lymphoid tissues is critical for this decision. Whether the course of the viral infection is acute or persistent for life primarily depends on the degree and kinetics of CTL exhaustion in infected lymphoid tissues. Virus-driven CTL expansion in lymphoid tissues resulted in the migration of large quantities of CTLs to nonlymphoid tissues, where they persisted at stable levels. Surprisingly, although virus-specific CTLs were rapidly clonally exhausted in lymphoid tissues under conditions of chronic infection, a substantial number of them migrated to nonlymphoid tissues, where they retained an effector phenotype for a long time. However, these cells were unable to control the infection and progressively lost their antiviral capacities (cytotoxicity and cytokine secretion) in a hierarchical manner before their eventual physical elimination. These results illustrate the differential tissue-specific regulation of antiviral T-cell responses during chronic infections and may help us to understand the dynamic relationship between antigen and T-cell populations in many persistent infections in humans.


Cell Metabolism | 2011

Heat Shock Transcription Factor 1 Is a Key Determinant of HCC Development by Regulating Hepatic Steatosis and Metabolic Syndrome

Xiongjie Jin; Demetrius Moskophidis; Nahid F. Mivechi

Hepatocellular carcinoma (HCC) occurrence and progression are linked tightly to progressive hepatic metabolic syndrome associated with insulin resistance, hepatic steatosis, and chronic inflammation. Heat shock transcription factor 1 (HSF1), a major transactivator of stress proteins, increases survival by protecting cells against environmental stressors. It has been implicated in the pathogenesis of cancer, but specific mechanisms by which HSF1 supports cancer development remain elusive. We propose a pathogenic mechanism whereby HSF1 activation promotes growth of premalignant cells and HCC development by stimulating lipid biosynthesis and perpetuating chronic hepatic metabolic disease induced by carcinogens. Our work shows that inactivation of HSF1 impairs cancer progression, mitigating adverse effects of carcinogens on hepatic metabolism by enhancing insulin sensitivity and sensitizing activation of AMP-activated protein kinase (AMPK), an important regulator of energy homeostasis and inhibitor of lipid synthesis. HSF1 is a potential target for the control of hepatic steatosis, hepatic insulin resistance, and HCC development.


Molecular and Cellular Biology | 2010

Loss of Hsp110 Leads to Age-Dependent Tau Hyperphosphorylation and Early Accumulation of Insoluble Amyloid β

Binnur Eroglu; Demetrius Moskophidis; Nahid F. Mivechi

ABSTRACT Accumulation of tau into neurofibrillary tangles is a pathological consequence of Alzheimers disease and other tauopathies. Failures of the quality control mechanisms by the heat shock proteins (Hsps) positively correlate with the appearance of such neurodegenerative diseases. However, in vivo genetic evidence for the roles of Hsps in neurodegeneration remains elusive. Hsp110 is a nucleotide exchange factor for Hsp70, and direct substrate binding to Hsp110 may facilitate substrate folding. Hsp70 complexes have been implicated in tau phosphorylation state and amyloid precursor protein (APP) processing. To provide evidence for a role for Hsp110 in central nervous system homeostasis, we have generated hsp110−/− mice. Our results show that hsp110−/− mice exhibit accumulation of hyperphosphorylated-tau (p-tau) and neurodegeneration. We also demonstrate that Hsp110 is in complexes with tau, other molecular chaperones, and protein phosphatase 2A (PP2A). Surprisingly, high levels of PP2A remain bound to tau but with significantly reduced activity in brain extracts from aged hsp110−/− mice compared to brain extracts from wild-type mice. Mice deficient in the Hsp110 partner (Hsp70) also exhibit a phenotype comparable to that of hsp110−/− mice, confirming a critical role for Hsp110-Hsp70 in maintaining tau in its unphosphorylated form during aging. In addition, crossing hsp110−/− mice with mice overexpressing mutant APP (APPβsw) leads to selective appearance of insoluble amyloid β42 (Aβ42), suggesting an essential role for Hsp110 in APP processing and Aβ generation. Thus, our findings provide in vivo evidence that Hsp110 plays a critical function in tau phosphorylation state through maintenance of efficient PP2A activity, confirming its role in pathogenesis of Alzheimers disease and other tauopathies.

Collaboration


Dive into the Demetrius Moskophidis's collaboration.

Top Co-Authors

Avatar

Nahid F. Mivechi

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lei Huang

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Rong Ou

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Xiongjie Jin

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Binnur Eroglu

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Graeme E. Price

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Jin Na Min

Georgia Regents University

View shared research outputs
Researchain Logo
Decentralizing Knowledge