Dena L. Toffaletti
Duke University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dena L. Toffaletti.
The EMBO Journal | 1997
Audrey R. Odom; Scott Muir; Eric Lim; Dena L. Toffaletti; John R. Perfect; Joseph Heitman
Cyclosporin A (CsA) and FK506 are antimicrobial, immunosuppressive natural products that inhibit signal transduction. In T cells and Saccharomyces cerevisiae, CsA and FK506 bind to the immunophilins cyclophilin A and FKBP12 and the resulting complexes inhibit the Ca2+‐regulated protein phosphatase calcineurin. We find that growth of the opportunistic fungal pathogen Cryptococcus neoformans is sensitive to CsA and FK506 at 37°C but not at 24°C, suggesting that CsA and FK506 inhibit a protein required for C.neoformans growth at elevated temperature. Genetic evidence supports a model in which immunophilin–drug complexes inhibit calcineurin to prevent growth at 37°C. The gene encoding the C.neoformans calcineurin A catalytic subunit was cloned and disrupted by homologous recombination. Calcineurin mutant strains are viable but do not survive in vitro conditions that mimic the host environment (elevated temperature, 5% CO2 or alkaline pH) and are no longer pathogenic in an animal model of cryptococcal meningitis. Introduction of the wild‐type calcineurin A gene complemented these growth defects and restored virulence. Our findings demonstrate that calcineurin is required for C.neoformans virulence and may define signal transduction elements required for fungal pathogenesis that could be targets for therapeutic intervention.
Infection and Immunity | 2003
Kirsten Nielsen; Gary M. Cox; Ping Wang; Dena L. Toffaletti; John R. Perfect; Joseph Heitman
ABSTRACT Cryptococcus neoformans is a human-pathogenic fungus that has evolved into three distinct varieties that infect most prominently the central nervous system. A sexual cycle involving haploid cells of a and α mating types has been reported for two varieties (C. neoformans var. neoformans, serotype D, and C. neoformans var. gattii, serotypes B and C), yet the vast majority of infections involve a distinct variety (C. neoformans var. grubii, serotype A) that has been thought to be clonal and restricted to the α mating type. We recently identified the first serotype A isolate of the a mating type which had been thought to be extinct (strain 125.91). Here we report that this unusual strain can mate with a subset of pathogenic serotype A strains to produce a filamentous dikaryon with fused clamp connections, basidia, and viable recombinant basidiospores. One meiotic segregant mated poorly with the serotype A reference strain H99 but robustly with a crg1 mutant that lacks a regulator of G protein signaling and is hyperresponsive to mating pheromone. This meiotic segregant was used to create congenic a and α mating type serotype A strains. Virulence tests with rabbit and murine models of cryptococcal meningitis showed that the serotype A congenic a and α mating type strains had equivalent virulence in animal models, in contrast to previous studies linking the α mating type to increased virulence in congenic serotype D strains. Our studies highlight a role for sexual recombination in the evolution of a human fungal pathogen and provide a robust genetic platform to establish the molecular determinants of virulence.
Infection and Immunity | 2006
Elizabeth Wills Petzold; Uwe Himmelreich; Eleftherios Mylonakis; Thomas H. Rude; Dena L. Toffaletti; Gary M. Cox; Jackie L. Miller; John R. Perfect
ABSTRACT The disaccharide trehalose has been found to play diverse roles, from energy source to stress protectant, and this sugar is found in organisms as diverse as bacteria, fungi, plants, and invertebrates but not in mammals. Recent studies in the pathobiology of Cryptococcus neoformans identified the presence of a functioning trehalose pathway during infection and suggested its importance for C. neoformans survival in the host. Therefore, in C. neoformans we created null mutants of the trehalose-6-phosphate (T6P) synthase (TPS1), trehalose-6-phophate phosphatase (TPS2), and neutral trehalase (NTH1) genes. We found that both TPS1 and TPS2 are required for high-temperature (37°C) growth and glycolysis but that the block at TPS2 results in the apparent toxic accumulation of T6P, which makes this enzyme a fungicidal target. Sorbitol suppresses the growth defect in the tps1 and tps2 mutants at 37°C, which supports the hypothesis that these sugars (trehalose and sorbitol) act primarily as stress protectants for proteins and membranes during exposure to high temperatures in C. neoformans. The essential nature of this pathway for disease was confirmed when a tps1 mutant strain was found to be avirulent in both rabbits and mice. Furthermore, in the system of the invertebrate C. elegans, in which high in vivo temperature is no longer an environmental factor, attenuation in virulence was still noted with the tps1 mutant, and this supports the hypothesis that the trehalose pathway in C. neoformans is involved in more host survival mechanisms than simply high-temperature stresses and glycolysis. These studies in C. neoformans and previous studies in other pathogenic fungi support the view of the trehalose pathway as a selective fungicidal target for use in antifungal development.
Journal of Clinical Investigation | 2003
Chiara Luberto; Beatriz Martinez-Mariño; Daniel Taraskiewicz; Benjamin Bolaños; Pasquale Chitano; Dena L. Toffaletti; Gary M. Cox; John R. Perfect; Yusuf A. Hannun; Edward Balish; Maurizio Del Poeta
Cryptococcus neoformans is a fungal pathogen that, after inhalation, can disseminate to the brain. Host alveolar macrophages (AMs) represent the first defense against the fungus. Once phagocytosed by AMs, fungal cells are killed by a concerted mechanism, involving the host-cellular response. If the cellular response is impaired, phagocytosis of the fungus may be detrimental for the host, since C. neoformans can grow within macrophages. Here, we identified a novel cryptococcal gene encoding antiphagocytic protein 1 (App1). App1 is a cryptococcal cytoplasmic protein that is secreted extracellularly and found in the serum of infected patients. App1 does not affect melanin production, capsule formation, or growth of C. neoformans. Treatment with recombinant App1 inhibited phagocytosis of fungal cells through a complement-mediated mechanism, and Deltaapp1 mutant is readily phagocytosed by AMs. Interestingly, the Deltaapp1 mutant strain showed a decreased virulence in mice deficient for complement C5 (A/Jcr), but it was hypervirulent in mice deficient for T and NK cells (Tgepsilon26). This study identifies App1 as a novel regulator of virulence for C. neoformans, and it highlights that internalization of fungal cells by AMs increases the dissemination of C. neoformans when the host cellular response is impaired.
Eukaryotic Cell | 2003
Barbara R. Steen; Scott Zuyderduyn; Dena L. Toffaletti; Marco A. Marra; Steven J.M. Jones; John R. Perfect; Jim Kronstad
ABSTRACT Cryptococcus neoformans, an encapsulated basidiomycete fungus of medical importance, is capable of crossing the blood-brain barrier and causing meningitis in both immunocompetent and immunocompromised individuals. To gain insight into the adaptation of the fungus to the host central nervous system (CNS), serial analysis of gene expression (SAGE) was used to characterize the gene expression profile of C. neoformans cells recovered from the CNS of infected rabbits. A SAGE library was constructed, and 49,048 tags were sequenced; 16,207 of these tags were found to represent unique sequences or tag families. Of the 304 most-abundant tags, 164 were assigned to a putative gene for subsequent functional grouping. The results (as determined according to the number of tags that identified genes encoding proteins required for these functions) indicated that the C. neoformans cells were actively engaged in protein synthesis, protein degradation, stress response, small-molecule transport, and signaling. In addition, a high level of energy requirement of the fungal cells was suggested by a large number of tags that matched putative genes for energy production. Taken together, these findings provide the first insight into the transcriptional adaptation of C. neoformans to the host environment and identify the set of fungal genes most highly expressed during cerebrospinal fluid infection.
Infection and Immunity | 2002
Thomas H. Rude; Dena L. Toffaletti; Gary M. Cox; John R. Perfect
ABSTRACT Functional genomics has become a major focus in the study of microbial pathogenesis. This study used a functional genomic tool, differential display reverse transcription-PCR, to identify a transcriptional profile of Cryptococcus neoformans cells as they produced meningitis in an immunosuppressed host. This serial global gene expression during infection allowed for the identification of up- and down-regulated genes during infection. During this profiling, a single gene for the enzyme isocitrate lyase (ICL1) was found to be up regulated at 1 week of infection in a rabbit meningitis model and during a time of maximum host cellular response. The finding suggested that this enzyme and the glyoxylate shunt pathway are important to this yeasts energy production during infection. However, site-directed icl1 mutants had no apparent virulence defect in two animal models and no growth defect within macrophages. These observations suggest that although the yeast responded to a certain environmental cue(s) by an increase in ICL1 expression during infection, this gene was not necessary for progression of a C. neoformans infection. Compounds that specifically target only ICL1 are unlikely to cripple C. neoformans growth in vivo.
Mbio | 2011
Michael S. Price; Marisol Betancourt-Quiroz; Jennifer Price; Dena L. Toffaletti; Haily Vora; Guanggan Hu; James W. Kronstad; John R. Perfect
ABSTRACT Cryptococcus neoformans is an important fungal pathogen of immunocompromised individuals, with a close relative, Cryptococcus gattii, emerging as a serious threat for the immunocompetent. During initial infection, C. neoformans colonizes the airspaces of the lungs, resulting in pneumonia, and subsequently migrates to the central nervous system (CNS). We sought to understand fungal carbon utilization during colonization of these fundamentally different niches within the host, in particular the roles of gluconeogenesis and glycolysis. We created mutants at key points in the gluconeogenesis/glycolysis metabolic pathways that are restricted for growth on lactate and glucose, respectively. A phosphoenolpyruvate carboxykinase mutant (the pck1∆ mutant), blocked for entry of 2- and 3-carbon substrates into gluconeogenesis and attenuated for virulence in a murine inhalation model, showed wild-type (WT) persistence in a rabbit cerebrospinal fluid (CSF) model of cryptococcosis. Conversely, both the pyruvate kinase (pyk1∆) and the hexose kinase I and II (hxk1∆/hxk2∆) mutants, which show impaired glucose utilization, exhibited severely attenuated virulence in the murine inhalation model of cryptococcosis and decreased persistence in the CNS in both the rabbit CSF and the murine inhalation models while displaying adequate persistence in the lungs of mice. These data suggest that glucose utilization is critical for virulence of C. neoformans and persistence of the yeast in the CNS. IMPORTANCE Cryptococcus neoformans is an emerging fungal pathogen of humans and is responsible for approximately 625,000 deaths annually among those suffering from HIV infection/AIDS. The ability of this fungus to persist in the host, coupled with its propensity to colonize the CNS, makes the understanding of nutrient acquisition in the host a primary concern. In this study, we report a requirement of glucose utilization for virulence of C. neoformans that is separate from its role in ATP production in the pathogen. Furthermore, we show that inhibition of glycolysis is a viable antifungal drug target, and impaired ATP production via the PYK1 deletion may serve as a model for dormant/chronic fungal infection in the host. Taken together, these results demonstrate the critical importance of understanding basic metabolic processes of the fungus in the context of host-pathogen interactions. Cryptococcus neoformans is an emerging fungal pathogen of humans and is responsible for approximately 625,000 deaths annually among those suffering from HIV infection/AIDS. The ability of this fungus to persist in the host, coupled with its propensity to colonize the CNS, makes the understanding of nutrient acquisition in the host a primary concern. In this study, we report a requirement of glucose utilization for virulence of C. neoformans that is separate from its role in ATP production in the pathogen. Furthermore, we show that inhibition of glycolysis is a viable antifungal drug target, and impaired ATP production via the PYK1 deletion may serve as a model for dormant/chronic fungal infection in the host. Taken together, these results demonstrate the critical importance of understanding basic metabolic processes of the fungus in the context of host-pathogen interactions.
Infection and Immunity | 2009
Popchai Ngamskulrungroj; Uwe Himmelreich; Julia Breger; Christabel Wilson; Methee Chayakulkeeree; Mark Krockenberger; Richard Malik; Heide-Marie Daniel; Dena L. Toffaletti; Julianne T. Djordjevic; Eleftherios Mylonakis; Wieland Meyer; John R. Perfect
ABSTRACT The trehalose pathway is essential for stress tolerance and virulence in fungi. We investigated the importance of this pathway for virulence of the pathogenic yeast Cryptococcus gattii using the highly virulent Vancouver Island, Canada, outbreak strain R265. Three genes putatively involved in trehalose biosynthesis, TPS1 (trehalose-6-phosphate [T6P] synthase) and TPS2 (T6P phosphatase), and degradation, NTH1 (neutral trehalose), were deleted in this strain, creating the R265tps1Δ, R265tps2Δ, and R265nth1Δ mutants. As in Cryptococcus neoformans, cellular trehalose was reduced in the R265tps1Δ and R265tps2Δ mutants, which could not grow and died, respectively, at 37°C on yeast extract-peptone-dextrose agar, suggesting that T6P accumulation in R265tps2Δ is directly toxic. Characterizations of the cryptococcal hexokinases and trehalose mutants support their linkage to the control of glycolysis in this species. However, unlike C. neoformans, the C. gattii R265tps1Δ mutant demonstrated, in addition, defects in melanin and capsule production, supporting an influence of T6P on these virulence pathways. Attenuated virulence of the R265tps1Δ mutant was not due solely to its 37°C growth defect, as shown in worm studies and confirmed by suppressor mutants. Furthermore, an intact trehalose pathway controls protein secretion, mating, and cell wall integrity in C. gattii. Thus, the trehalose synthesis pathway plays a central role in the virulence composites of C. gattii through multiple mechanisms. Deletion of NTH1 had no effect on virulence, but inactivation of the synthesis genes, TPS1 and TPS2, has profound effects on survival of C. gattii in the invertebrate and mammalian hosts. These results highlight the central importance of this pathway in the virulence composites of both pathogenic cryptococcal species.
Medical Mycology | 1996
Gary M. Cox; Dena L. Toffaletti; John R. Perfect
Present transformation systems for Cryptococcus neoformans depend on complementation of auxotrophic mutants. We have developed a dominant selection system for transformation of wild-type strains of cryptococci in which resistance to the antibiotic hygromycin B is used as the selectable marker. A heterologous fusion gene construct was created by attaching the putative promoter sequence and start site from a cryptococcal actin gene to a truncated hygromycin B phosphotransferase gene from E. coli. Biolistic transformation with this construct resulted in cryptococci resistant to hygromycin B, and transformation efficiencies approached approximately 500 transformants per microgram DNA. The construct was found to exist in transformants as both extrachromosomal and integrative forms. The transformants with integrated constructs were stable both in vitro and in vivo, and constructs were recoverable from most transformed cells using a plasmid rescue technique. This is the first dominant selection system for use in C. neoformans, and it should prove useful for molecular studies with this important pathogenic yeast.
Infection and Immunity | 2010
Anthony Lee; Dena L. Toffaletti; Jennifer L. Tenor; Erik J. Soderblom; J. Will Thompson; M. Arthur Moseley; Michael R. Price; John R. Perfect
ABSTRACT Cryptococcus neoformans is a fungal pathogen that encounters various microenvironments during growth in the mammalian host, including intracellular vacuoles, blood, and cerebrospinal fluid (CSF). Because the CSF is isolated by the blood-brain barrier, we hypothesize that CSF presents unique stresses that C. neoformans must overcome to establish an infection. We assayed 1,201 mutants for survival defects in growth media, saline, and human CSF. We assessed CSF-specific mutants for (i) mutant survival in both human bronchoalveolar lavage (BAL) fluid and fetal bovine serum (FBS), (ii) survival in macrophages, and (iii) virulence using both Caenorhabditiselegans and rabbit models of cryptococcosis. Thirteen mutants exhibited significant survival defects unique to CSF. The mutations of three of these mutants were recreated in the clinical serotype A strain H99: deletions of the genes for a cation ATPase transporter (ena1Δ), a putative NEDD8 ubiquitin-like protein (rub1Δ), and a phosphatidylinositol 4-kinase (pik1Δ). Mutant survival rates in yeast media, saline, and BAL fluid were similar to those of the wild type; however, survival in FBS was reduced but not to the levels in CSF. These mutant strains also exhibited decreased intracellular survival in macrophages, various degrees of virulence in nematodes, and severe attenuation of survival in a rabbit meningitis model. We analyzed the CSF by mass spectrometry for candidate compounds responsible for the survival defect. Our findings indicate that the genes required for C. neoformans survival in CSF ex vivo are necessary for survival and infection in this unique host environment.