Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dena Leshkowitz is active.

Publication


Featured researches published by Dena Leshkowitz.


Molecular and Cellular Biology | 2002

Identification of a Novel Hypoxia-Inducible Factor 1-Responsive Gene, RTP801, Involved in Apoptosis

Tzipora Shoshani; Alexander Faerman; Igor Mett; Elena Zelin; Tamar Tenne; Svetlana Gorodin; Yana Moshel; Shlomo Elbaz; Ayelet Chajut; Hagar Kalinski; Iris Kamer; Ada Rozen; Orna Mor; Eli Keshet; Dena Leshkowitz; Paz Einat; Rami Skaliter; Elena Feinstein

ABSTRACT Hypoxia is an important factor that elicits numerous physiological and pathological responses. One of the major gene expression programs triggered by hypoxia is mediated through hypoxia-responsive transcription factor hypoxia-inducible factor 1 (HIF-1). Here, we report the identification and cloning of a novel HIF-1-responsive gene, designated RTP801. Its strong up-regulation by hypoxia was detected both in vitro and in vivo in an animal model of ischemic stroke. When induced from a tetracycline-repressible promoter, RTP801 protected MCF7 and PC12 cells from hypoxia in glucose-free medium and from H2O2-triggered apoptosis via a dramatic reduction in the generation of reactive oxygen species. However, expression of RTP801 appeared toxic for nondividing neuron-like PC12 cells and increased their sensitivity to ischemic injury and oxidative stress. Liposomal delivery of RTP801 cDNA to mouse lungs also resulted in massive cell death. Thus, the biological effect of RTP801 overexpression depends on the cell context and may be either protecting or detrimental for cells under conditions of oxidative or ischemic stresses. Altogether, the data suggest a complex type of involvement of RTP801 in the pathogenesis of ischemic diseases.


Genetics | 2011

Wheat hybridization and polyploidization results in deregulation of small RNAs.

Michal Kenan-Eichler; Dena Leshkowitz; Lior Tal; Elad Noor; Cathy Melamed-Bessudo; Moshe Feldman; Avraham A. Levy

Speciation via interspecific or intergeneric hybridization and polyploidization triggers genomic responses involving genetic and epigenetic alterations. Such modifications may be induced by small RNAs, which affect key cellular processes, including gene expression, chromatin structure, cytosine methylation and transposable element (TE) activity. To date, the role of small RNAs in the context of wide hybridization and polyploidization has received little attention. In this work, we performed high-throughput sequencing of small RNAs of parental, intergeneric hybrid, and allopolyploid plants that mimic the genomic changes occurring during bread wheat speciation. We found that the percentage of small RNAs corresponding to miRNAs increased with ploidy level, while the percentage of siRNAs corresponding to TEs decreased. The abundance of most miRNA species was similar to midparent values in the hybrid, with some deviations, as seen in overrepresentation of miR168, in the allopolyploid. In contrast, the number of siRNAs corresponding to TEs strongly decreased upon allopolyploidization, but not upon hybridization. The reduction in corresponding siRNAs, together with decreased CpG methylation, as shown here for the Veju element, represent hallmarks of TE activation. TE-siRNA downregulation in the allopolyploid may contribute to genome destabilization at the initial stages of speciation. This phenomenon is reminiscent of hybrid dysgenesis in Drosophila.


Journal of Biological Chemistry | 2000

Transcription Factor BETA2 Acts Cooperatively with E2A and PDX1 to Activate the Insulin Gene Promoter

Eitan Glick; Dena Leshkowitz; Michael D. Walker

The insulin gene is efficiently expressed only in pancreatic beta cells. Using reverse transcriptase-polymerase chain reaction analysis, we show that insulin mRNA levels are at least 105-fold higher in beta cells than non-beta cells. To examine the underlying mechanisms, we expressed beta cell transcription factors by transfection of non-beta cells. Separate expression of BETA2, E2A, or PDX1 led to modest (<10-fold) activation of the insulin promoter, whereas co-expression of the three proteins produced synergistic, high level activation (160-fold). This level of activity is ∼25% that observed in transfected beta cell lines. Of the three factors studied, BETA2 appears to play a dominant role. Efficient transcription required a C-terminal activation domain of BETA2 and an N-terminal region, which does not function as an independent activation domain. The myogenic basic helix-loop-helix (bHLH) protein MyoD was unable to bind and activate the promoter, even when its DNA binding region was replaced with that of BETA2. Our results demonstrate the central importance of BETA2 in insulin gene transcription and the importance of sequences outside the canonical DNA binding domain in permitting efficient DNA binding and cell-specific activity of the insulin gene promoter.


Cell Reports | 2013

Addiction of t(8;21) and inv(16) Acute Myeloid Leukemia to Native RUNX1

Oren Ben-Ami; Dan Friedman; Dena Leshkowitz; Dalia Goldenberg; Kira Orlovsky; Niv Pencovich; Joseph Lotem; Amos Tanay; Yoram Groner

The t(8;21) and inv(16) chromosomal aberrations generate the oncoproteins AML1-ETO (A-E) and CBFβ-SMMHC (C-S). The role of these oncoproteins in acute myeloid leukemia (AML) etiology has been well studied. Conversely, the function of native RUNX1 in promoting A-E- and C-S-mediated leukemias has remained elusive. We show that wild-type RUNX1 is required for the survival of t(8;21)-Kasumi-1 and inv(16)-ME-1 leukemic cells. RUNX1 knockdown in Kasumi-1 cells (Kasumi-1(RX1-KD)) attenuates the cell-cycle mitotic checkpoint, leading to apoptosis, whereas knockdown of A-E in Kasumi-1(RX1-KD) rescues these cells. Mechanistically, a delicate RUNX1/A-E balance involving competition for common genomic sites that regulate RUNX1/A-E targets sustains the malignant cell phenotype. The broad medical significance of this leukemic cell addiction to native RUNX1 is underscored by clinical data showing that an active RUNX1 allele is usually preserved in both t(8;21) or inv(16) AML patients, whereas RUNX1 is frequently inactivated in other forms of leukemia. Thus, RUNX1 and its mitotic control targets are potential candidates for new therapeutic approaches.


New Phytologist | 2013

The tomato SlSHINE3 transcription factor regulates fruit cuticle formation and epidermal patterning

Jian Xin Shi; Avital Adato; Noam Alkan; Yonghua He; Justin Lashbrooke; Antonio J. Matas; Sagit Meir; Sergey Malitsky; Tal Isaacson; Dov Prusky; Dena Leshkowitz; Lukas Schreiber; Antonio Granell; Emilie Widemann; Bernard Grausem; Franck Pinot; Jocelyn K. C. Rose; Ilana Rogachev; Asaph Aharoni

Fleshy tomato fruit typically lacks stomata; therefore, a proper cuticle is particularly vital for fruit development and interaction with the surroundings. Here, we characterized the tomato SlSHINE3 (SlSHN3) transcription factor to extend our limited knowledge regarding the regulation of cuticle formation in fleshy fruits. We created SlSHN3 overexpressing and silenced plants, and used them for detailed analysis of cuticular lipid compositions, phenotypic characterization, and the study on the mode of SlSHN3 action. Heterologous expression of SlSHN3 in Arabidopsis phenocopied overexpression of the Arabidopsis SHNs. Silencing of SlSHN3 results in profound morphological alterations of the fruit epidermis and significant reduction in cuticular lipids. We demonstrated that SlSHN3 activity is mediated by control of genes associated with cutin metabolism and epidermal cell patterning. As with SlSHN3 RNAi lines, mutation in the SlSHN3 target gene, SlCYP86A69, resulted in severe cutin deficiency and altered fruit surface architecture. In vitro activity assays demonstrated that SlCYP86A69 possesses NADPH-dependent ω-hydroxylation activity, particularly of C18:1 fatty acid to the 18-hydroxyoleic acid cutin monomer. This study provided insights into transcriptional mechanisms mediating fleshy fruit cuticle formation and highlighted the link between cutin metabolism and the process of fruit epidermal cell patterning.


Developmental Neurobiology | 2014

Subcellular transcriptomics-dissection of the mRNA composition in the axonal compartment of sensory neurons.

Adi Minis; Dvir Dahary; Ohad Manor; Dena Leshkowitz; Yitzhak Pilpel; Avraham Yaron

RNA localization is a regulatory mechanism that is conserved from bacteria to mammals. Yet, little is known about the mechanism and the logic that govern the distribution of RNA transcripts within the cell. Here, we present a novel organ culture system, which enables the isolation of RNA specifically from NGF dependent re‐growing peripheral axons of mouse embryo, sensory neurons. In combination with massive parallel sequencing technology, we determine the subcellular localization of most transcripts in the transcriptome. We found that the axon is enriched in mRNAs that encode secreted proteins, transcription factors, and the translation machinery. In contrast, the axon was largely depleted from mRNAs encoding transmembrane proteins, a particularly interesting finding, since many of these gene products are specifically expressed in the tip of the axon at the protein level. Comparison of the mitochondrial mRNAs encoded in the nucleus with those encoded in the mitochondria, uncovered completely different localization pattern, with the latter much enriched in the axon fraction. This discovery is intriguing since the protein products encoded by the nuclear and mitochondrial genome form large co‐complexes. Finally, focusing on alternative splice variants that are specific to axonal fractions, we find short sequence motifs that are enriched in the axonal transcriptome. Together our findings shed light on the extensive role of RNA localization and its characteristics.


BMC Genomics | 2010

Genome sequence of the pattern forming Paenibacillus vortex bacterium reveals potential for thriving in complex environments

Alexandra Sirota-Madi; Tsviya Olender; Yael Helman; Colin Ingham; Ina Brainis; Dalit Roth; Efrat Hagi; Leonid Brodsky; Dena Leshkowitz; V. V. Galatenko; Vladimir Nikolaev; Raja C Mugasimangalam; Sharron Bransburg-Zabary; David L. Gutnick; Doron Lancet; Eshel Ben-Jacob

BackgroundThe pattern-forming bacterium Paenibacillus vortex is notable for its advanced social behavior, which is reflected in development of colonies with highly intricate architectures. Prior to this study, only two other Paenibacillus species (Paenibacillus sp. JDR-2 and Paenibacillus larvae) have been sequenced. However, no genomic data is available on the Paenibacillus species with pattern-forming and complex social motility. Here we report the de novo genome sequence of this Gram-positive, soil-dwelling, sporulating bacterium.ResultsThe complete P. vortex genome was sequenced by a hybrid approach using 454 Life Sciences and Illumina, achieving a total of 289× coverage, with 99.8% sequence identity between the two methods. The sequencing results were validated using a custom designed Agilent microarray expression chip which represented the coding and the non-coding regions. Analysis of the P. vortex genome revealed 6,437 open reading frames (ORFs) and 73 non-coding RNA genes. Comparative genomic analysis with 500 complete bacterial genomes revealed exceptionally high number of two-component system (TCS) genes, transcription factors (TFs), transport and defense related genes. Additionally, we have identified genes involved in the production of antimicrobial compounds and extracellular degrading enzymes.ConclusionsThese findings suggest that P. vortex has advanced faculties to perceive and react to a wide range of signaling molecules and environmental conditions, which could be associated with its ability to reconfigure and replicate complex colony architectures. Additionally, P. vortex is likely to serve as a rich source of genes important for agricultural, medical and industrial applications and it has the potential to advance the study of social microbiology within Gram-positive bacteria.


Molecular and Cellular Biology | 2014

Transcription Factor Runx3 Regulates Interleukin-15-Dependent Natural Killer Cell Activation

Ditsa Levanon; Varda Negreanu; Joseph Lotem; Karen Rae Bone; Ori Brenner; Dena Leshkowitz; Yoram Groner

ABSTRACT Natural killer cells belong to the family of innate lymphoid cells comprising the frontline defense against infected and transformed cells. Development and activation of natural killer cells is highly dependent on interleukin-15 signaling. However, very little is known about the transcription program driving this process. The transcription factor Runx3 is highly expressed in natural killer cells, but its function in these cells is largely unknown. We show that loss of Runx3 impaired interleukin-15-dependent accumulation of mature natural killer cells in vivo and under culture conditions and pregnant Runx3−/− mice completely lack the unique population of interleukin-15-dependent uterine natural killer cells. Combined chromatin immunoprecipitation sequencing and differential gene expression analysis of wild-type versus Runx3-deficient in vivo activated splenic natural killer cells revealed that Runx3 cooperates with ETS and T-box transcription factors to drive the interleukin-15-mediated transcription program during activation of these cells. Runx3 functions as a nuclear regulator during interleukin-15-dependent activation of natural killer cells by regulating the expression of genes involved in proliferation, maturation, and migration. Similar studies with additional transcription factors will allow the construction of a more detailed transcriptional network that controls natural killer cell development and function.


PLOS ONE | 2013

Genome-Wide Survey of Cold Stress Regulated Alternative Splicing in Arabidopsis thaliana with Tiling Microarray

Noam Leviatan; Noam Alkan; Dena Leshkowitz; Robert Fluhr

Alternative splicing plays a major role in expanding the potential informational content of eukaryotic genomes. It is an important post-transcriptional regulatory mechanism that can increase protein diversity and affect mRNA stability. Alternative splicing is often regulated in a tissue-specific and stress-responsive manner. Cold stress, which adversely affects plant growth and development, regulates the transcription and splicing of plant splicing factors. This can affect the pre-mRNA processing of many genes. To identify cold regulated alternative splicing we applied Affymetrix Arabidopsis tiling arrays to survey the transcriptome under cold treatment conditions. A novel algorithm was used for detection of statistically relevant changes in intron expression within a transcript between control and cold growth conditions. A reverse transcription polymerase chain reaction (RT-PCR) analysis of a number of randomly selected genes confirmed the changes in splicing patterns under cold stress predicted by tiling array. Our analysis revealed new types of cold responsive genes. While their expression level remains relatively unchanged under cold stress their splicing pattern shows detectable changes in the relative abundance of isoforms. The majority of cold regulated alternative splicing introduced a premature termination codon (PTC) into the transcripts creating potential targets for degradation by the nonsense mediated mRNA decay (NMD) process. A number of these genes were analyzed in NMD-defective mutants by RT-PCR and shown to evade NMD. This may result in new and truncated proteins with altered functions or dominant negative effects. The results indicate that cold affects both quantitative and qualitative aspects of gene expression.


PLOS ONE | 2013

Runx3-mediated transcriptional program in cytotoxic lymphocytes.

Joseph Lotem; Ditsa Levanon; Varda Negreanu; Dena Leshkowitz; Gilgi Friedlander; Yoram Groner

The transcription factor Runx3 is highly expressed in CD8+ T and NK cytotoxic lymphocytes and is required for their effective activation and proliferation but molecular insights into the transcription program regulated by Runx3 in these cells are still missing. Using Runx3-ChIP-seq and transcriptome analysis of wild type vs. Runx3-/- primary cells we have now identified Runx3-regulated genes in the two cell types at both resting and IL-2-activated states. Runx3-bound genomic regions in both cell types were distantly located relative to gene transcription start sites and were enriched for RUNX and ETS motifs. Bound genomic regions significantly overlapped T-bet and p300-bound enhancer regions in Runx3-expressing Th1 helper cells. Compared to resting cells, IL-2-activated CD8+ T and NK cells contain three times more Runx3-regulated genes that are common to both cell types. Functional annotation of shared CD8+ T and NK Runx3-regulated genes revealed enrichment for immune-associated terms including lymphocyte activation, proliferation, cytotoxicity, migration and cytokine production, highlighting the role of Runx3 in CD8+ T and NK activated cells.

Collaboration


Dive into the Dena Leshkowitz's collaboration.

Top Co-Authors

Avatar

Yoram Groner

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Joseph Lotem

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Michael D. Walker

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Ditsa Levanon

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Ester Feldmesser

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Shirley Horn-Saban

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Steffen Jung

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Varda Negreanu

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Yisrael Parmet

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge