Denina B.D. Simmons
Environment Canada
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Denina B.D. Simmons.
Environmental Science & Technology | 2013
Helena C. Silva de Assis; Denina B.D. Simmons; Jacob M. Zamora; Wudu E. Lado; Ahmed M. Al-Ansari; James P. Sherry; Jules M. Blais; Chris D. Metcalfe; Vance L. Trudeau
The antidepressant fluoxetine (FLX) and the synthetic estrogen, 17 alpha-ethinylestradiol (EE2), are present in municipal sewage discharges. To better understand possible interactions between them, male goldfish were exposed to an ethanol control or to nominal concentrations of FLX (0.54 μg/L) and EE2 (5 ng/L) alone and in combination for 14 days. Real-time reverse-transcription polymerase chain reaction was used to assess effects on hepatic gene expression and liquid chromatography tandem mass spectrometry to analyze the plasma proteome. The results showed an increase in estrogen receptor alpha (esr1) and vitellogenin (vtg) gene expression by 1.9-2.4-fold in the FLX and EE2 groups, but this did not reach statistical significance. In contrast, co-exposure up regulated esr1 and vtg gene expression by 5.5- and 5.3-fold, respectively. Fluoxetine and EE2 alone did not affect estrogen receptor beta (esr2), but the co-exposure down regulated esr2 expression by 50%. There was a significant increase in the number of plasma proteins that were related to endocrine system disorders in the FLX and FLX plus EE2 groups. The level of VTG protein was increased in the plasma from goldfish exposed to EE2, FLX, and FLX plus EE2. Our study demonstrates that low concentrations of FLX and EE2 in a simple mixture produce strong estrogen-like effects in the male goldfish.
Environmental Toxicology and Chemistry | 2015
Denina B.D. Simmons; Jonathan P. Benskin; John R. Cosgrove; Bernard P. Duncker; Drew R. Ekman; Christopher J. Martyniuk; James P. Sherry
There are multiple sources of biological and technical variation in a typical ecotoxicology study that may not be revealed by traditional endpoints but that become apparent in an omics dataset. As researchers increasingly apply omics technologies to environmental studies, it will be necessary to understand and control the main source(s) of variability to facilitate meaningful interpretation of such data. For instance, can variability in omics studies be addressed by changing the approach to study design and data analysis? Are there statistical methods that can be employed to correctly interpret omics data and make use of unattributed, inherent variability? The present study presents a review of experimental design and statistical considerations applicable to the use of omics methods in systems toxicology studies. In addition to highlighting potential sources that contribute to experimental variability, this review suggests strategies with which to reduce and/or control such variability so as to improve reliability, reproducibility, and ultimately the application of omics data for systems toxicology.
Environmental Science & Technology | 2012
Denina B.D. Simmons; Niels C. Bols; Bernard P. Duncker; Mark E. McMaster; Jason Miller; James P. Sherry
White sucker (Catostomus commersonii) sampled from the Thunder Bay Area of Concern were assessed for health using a shotgun approach to compile proteomic profiles. Plasma proteins were sampled from male and female fish from a reference location, an area in recovery within Thunder Bay Harbour, and a site at the mouth of the Kaministiquia River where water and sediment quality has been degraded by industrial activities. The proteins were characterized using reverse-phase liquid chromatography tandem to a quadrupole-time-of-flight (LC-Q-TOF) mass spectrometer and were identified by searching in peptide databases. In total, 1086 unique proteins were identified. The identified proteins were then examined by means of a bioinformatics pathway analysis to gain insight into the biological functions and disease pathways that were represented and to assess whether there were any significant changes in protein expression due to sampling location. Female white sucker exhibited significant (p = 0.00183) site-specific changes in the number of plasma proteins that were related to tumor formation, reproductive system disease, and neurological disease. Male fish plasma had a significantly different (p < 0.0001) number of proteins related to neurological disease and tumor formation. Plasma concentrations of vitellogenin were significantly elevated in females from the Kaministiquia River compared to the Thunder Bay Harbour and reference sites. The protein expression profiles indicate that white sucker health has benefited from the remediation of the Thunder Bay Harbour site, whereas white sucker from the Kaministiquia River site are impacted by ongoing contaminant discharges.
Aquatic Toxicology | 2015
Victoria Tkatcheva; David Poirier; Richard Chong-Kit; Vasile I. Furdui; Christopher Burr; Ray Leger; Jaspal Parmar; Teresa Switzer; Stefanie Maedler; Eric J. Reiner; James P. Sherry; Denina B.D. Simmons
Worldwide production of lithium (Li) has increased dramatically during the past decade, driven by the demand for high charge density batteries. Information about Li in the aquatic environment is limited. The present study was designed to explore the effects of Li in rainbow trout (Oncorhynchus mykiss). Juvenile trout were exposed to a nominal concentration of 1.0mg Li/L in three separate exposures. Major ion concentrations were measured in brain and plasma by ion chromatography. Plasma proteins and fatty acids were measured by HPLC-MS/MS. Lithium accumulated in the brain and plasma. Arachidonic acid was elevated in plasma after 48h. Elevated concentrations of Li in brain were associated with depressed concentrations of sodium, magnesium, potassium and ammonium relative to the control. In plasma, sodium and calcium were also depressed. Several changes occurred to plasma proteins corresponding to Li exposure: inhibition of prostaglandin synthase (Ptgs2), increased expression of copper transporting ATP synthases, and Na(+)/K(+) ATPase. To our knowledge, ours is the first study to demonstrate elevated Li concentrations in fish brain, with associated effects on ion regulation.
Comparative Biochemistry and Physiology Part D: Genomics and Proteomics | 2016
Christopher J. Martyniuk; Denina B.D. Simmons
The applications for high throughput omics technologies in environmental science have increased dramatically in recent years. Transcriptomics, proteomics, and metabolomics have been used to study how chemicals in our environment affect both aquatic and terrestrial organisms, and the characterization of molecular initiating events is a significant goal in toxicology to better predict adverse responses to toxicants. This special journal edition demonstrates the scope of the science that leverages omics-based methods in both laboratory and wild populations within the context of environmental toxicology, ranging from fish to mammals. It is important to recognize that the environment comprises one axis of the One Health concept - the idea that human health is unequivocally intertwined to our environment and to the organisms that inhabit that environment. We have much to learn from a comparative approach, and studies that integrate the transcriptome, proteome, and the metabolome are expected to offer the most detailed mechanism-based adverse outcome pathways that are applicable for use in both environmental monitoring and risk assessment.
Environmental Toxicology and Chemistry | 2017
João Luiz Coelho Ribas; James P. Sherry; Aleksander Roberto Zampronio; Helena C. Silva de Assis; Denina B.D. Simmons
Nonsteroidal anti-inflammatory drugs are among the most widely detected pharmaceuticals in surface water worldwide. The nonsteroidal anti-inflammatory drug diclofenac is used to treat many types of pain and inflammation. Diclofenacs potential to cause adverse effects in exposed wildlife is a growing concern. To evaluate the effects of waterborne diclofenac on the immune response in Rhamdia quelen (South American catfish), fish were exposed to 3 concentrations of diclofenac (0.2, 2.0, and 20.0 μg/L) for 14 d. Some of the exposed fish were also given an intraperitoneal injection on day 14 of 1 mg/kg of carrageenan to evaluate cell migration to the peritoneum. Total blood leukocyte count and carrageenan-induced leukocyte migration to the peritoneal cavity, particularly of polymorphonuclear cells, were significantly affected for all diclofenac exposure groups. Nitric oxide production was significantly reduced in the diclofenac-treated fish. Plasma and kidney proteins were analyzed by means of liquid chromatography-tandem mass spectrometry in a shotgun proteomic approach. In both plasma and kidney of diclofenac-exposed R. quelen, the expression of 20 proteins related to the inflammatory process, nitric oxide production, leukocyte migration, and the complement cascade was significantly altered. In addition, class I major histocompatibility complex was significantly decreased in plasma of diclofenac-treated fish. Thus, waterborne exposure to diclofenac could lead to suppression of the innate immune system in R. quelen. Environ Toxicol Chem 2017;36:2092-2107.
Scientific Reports | 2017
Derek C. G. Muir; Denina B.D. Simmons; Xiaowa Wang; Tom Peart; Maria Villella; Jason Miller; Jim Sherry
The bioaccumulation of a broad range of pharmaceuticals and personal care product chemicals (PPCPs) was studied in Cootes Paradise Marsh (CPM), an urban wetland that receives tertiary treated municipal waste waters as well as urban storm runoff. We measured PPCPs in caged and wild goldfish, as well as wild carp, and compared observed bioaccumulation factors (BAFP) using concentrations in surface waters and fish blood plasma, with modeled BAFs. Thirty-two PPCPs were detected in water from the central CPM site (CPM3) while 64 PPCPs were found at higher concentrations at a site immediately downstream of the effluent outflow (CPM1). Following a 3-week deployment, 15 PPCPs were detected in the plasma of caged goldfish at CPM1, and 14 at CPM3, compared to only 3 in goldfish caged at a reference site. The highest BAFP in goldfish were for the antidepressant Σfluoxetine averaging 386 L/kg in caged and 906 L/kg in wild goldfish, respectively. In carp, ΣDiazepam (diazepam and oxazepam) had the highest BAFP (927 L/kg). This study identified a broader range of PPCPs in fish and surface waters than previously reported. However, modeled BAFs did not show good agreement with observed whole body or plasma BAFs, demonstrating that more work is needed to better explain bioaccumulation of PPCPs.
Journal of Proteomics | 2018
Xuefang Liang; April Feswick; Denina B.D. Simmons; Christopher J. Martyniuk
Molecular initiating events and downstream transcriptional/proteomic responses provide valuable information for adverse outcome pathways, which can be used predict the effects of chemicals on physiological systems. There has been a paucity of research that addresses sex-specific expression profiling in toxicology and due to cost, time, and logistical considerations, sex as a variable has not been widely considered. In response to this deficiency, federal agencies in the United States, Canada, and Europe have highlighted the importance of including sex as a variable in scientific investigations. Using case studies from both aquatic and mammalian toxicology, we report that there can be less than ~20-25% consensus in how the transcriptome and proteome of each sex responds to chemicals. Chemicals that have been shown to elicit sex-specific responses in the transcriptome or proteome include pharmaceuticals, anti-fouling agents, anticorrosive agents, and fungicides, among others. Sex-specific responses in the transcriptome and proteome are not isolated to whole animals, as investigations demonstrate that primary cell cultures isolated from each sex responds differently to toxicants. This signifies that sex is important, even in cell lines. Sex has significant implications for predictive toxicology, and both male and female data are required to improve robustness of adverse outcome pathways. BIOLOGICAL SIGNIFICANCE Clinical toxicology recognizes that sex is an important variable, as pharmacokinetics (ADME; absorption, distribution, metabolism, and excretion) can differ between females and males. However, few studies in toxicology have explored the implication of sex in relation to the transcriptome and proteome of whole organisms. High-throughput molecular approaches are becoming more frequently applied in toxicity screens (e.g. pre-clinical experiments, fish embryos, cell lines, synthetic tissues) and such data are expected to build upon reporter-based cell assays (e.g. receptor activation, enzyme inhibition) used in toxicant screening programs (i.e. Tox21, ToxCast, REACH). Thus, computational models can more accurately predict the diversity of adverse effects that can occur from chemical exposure within the biological system. Our studies and those synthesized from the literature suggest that the transcriptome and proteome of females and males respond quite differently to chemicals. This has significant implications for predicting adverse effects in one sex when using molecular data generated in the other sex. While molecular initiating events are not expected to differ dramatically between females and males (i.e. an estrogen binds estrogen receptors in both sexes), it is important to acknowledge that the downstream transcriptomic and proteomic responses can differ based upon the presence/absence of co-regulators and inherent sex-specific variability in regulation of transcriptional and translational machinery. Transcriptomic and proteomic studies also reveal that cell processes affected by chemicals can differ due to sex, and this can undoubtedly lead to sex-specific physiological responses.
Scientific Reports | 2017
Denina B.D. Simmons; J. Miller; S. Clarence; Erin S. McCallum; Sigal Balshine; B. Chandramouli; J. Cosgrove; Jim Sherry
Population growth has led to increased global discharges of wastewater. Contaminants that are not fully removed during wastewater treatment, such as pharmaceuticals and personal care products (PPCPs), may negatively affect aquatic ecosystems. PPCPs can bioaccumulate causing adverse health effects and behavioural changes in exposed fish. To assess the impact of PPCPs on wild fish, and to assess whether caged fish could be used as a surrogate for resident wild fish in future monitoring, we caged goldfish in a marsh affected by discharges of wastewater effluents (Cootes Paradise, Lake Ontario, Canada). We collected plasma from resident wild goldfish, and from goldfish that we caged in the marsh for three weeks. We analyzed the plasma proteome and metabolome of both wild and caged fish. We also compared proteomic and metabolic responses in caged and wild fish from the marsh to fish caged at a reference site (Jordan Harbour Conservation Area). We identified significant changes in expression of over 250 molecules that were related to liver necrosis, accumulation and synthesis of lipids, synthesis of cyclic AMP, and the quantity of intracellular calcium in fish from the wastewater affected marsh. Our results suggest that PPCPs could be affecting the health of wild fish populations.
Scientific Reports | 2017
Denina B.D. Simmons; Erin S. McCallum; Sigal Balshine; B. Chandramouli; J. Cosgrove; Jim Sherry
Pharmaceuticals and personal care products (PPCPs) have been found in wastewater treatment plant (WWTP) effluents and their recipient watersheds. To assess the potential of WWTP effluents to alter fish behaviour, we caged male goldfish (Carassius auratus) for 21-days at three sites along a contamination gradient downstream from a WWTP which discharges into Cootes Paradise Marsh, on the western tip of Lake Ontario. We also included a fourth caging site as an external reference site within Lake Ontario at the Jordan Harbour Conservation Area. We then measured concentrations of PPCPs and monoamine neurotransmitters in caged goldfish plasma, and conducted behavioural assays measuring activity, startle response, and feeding. We detected fifteen different PPCPs in goldfish plasma including six serotonin reuptake inhibitors (amitriptyline, citalopram, fluoxetine/norfluoxetine, sertraline, venlafaxine, and diphenhydramine). Plasma concentrations of serotonin were significantly greater in plasma of fish caged closer to the WWTP effluent outfall site. The fish caged near and downstream of the WWTP effluent were bolder, more exploratory, and more active overall than fish caged at the reference site. Taken together, our results suggest that fish downstream of WWTPs are accumulating PPCPs at levels sufficient to alter neurotransmitter concentrations and to also impair ecologically-relevant behaviours.