Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Denis Belyaev is active.

Publication


Featured researches published by Denis Belyaev.


Nature | 2007

A warm layer in Venus' cryosphere and high-altitude measurements of HF, HCl, H2O and HDO

Ann Carine Vandaele; Oleg Korablev; Eric Villard; Anna Fedorova; Didier Fussen; Eric Quémerais; Denis Belyaev; Arnaud Mahieux; Frank Montmessin; Christian Müller; Eddy Neefs; D. Nevejans; Valérie Wilquet; Jacques Dubois; Alain Hauchecorne; A. V. Stepanov; Imant I. Vinogradov; A. V. Rodin; Michel Cabane; Eric Chassefière; Jean-Yves Chaufray; E. Dimarellis; François Leblanc; Florence Lefevre; Patrice Rannou; E. Van Ransbeeck; L. V. Zasova; F. Forget; Sébastien Lebonnois; Dmitri Titov

Venus has thick clouds of H2SO4 aerosol particles extending from altitudes of 40 to 60 km. The 60–100 km region (the mesosphere) is a transition region between the 4 day retrograde superrotation at the top of the thick clouds and the solar–antisolar circulation in the thermosphere (above 100 km), which has upwelling over the subsolar point and transport to the nightside. The mesosphere has a light haze of variable optical thickness, with CO, SO2, HCl, HF, H2O and HDO as the most important minor gaseous constituents, but the vertical distribution of the haze and molecules is poorly known because previous descent probes began their measurements at or below 60 km. Here we report the detection of an extensive layer of warm air at altitudes 90–120 km on the night side that we interpret as the result of adiabatic heating during air subsidence. Such a strong temperature inversion was not expected, because the night side of Venus was otherwise so cold that it was named the ‘cryosphere’ above 100 km. We also measured the mesospheric distributions of HF, HCl, H2O and HDO. HCl is less abundant than reported 40 years ago. HDO/H2O is enhanced by a factor of ∼2.5 with respect to the lower atmosphere, and there is a general depletion of H2O around 80–90 km for which we have no explanation.


Nature Geoscience | 2013

Variations of sulphur dioxide at the cloud top of Venus's dynamic atmosphere

Emmanuel Marcq; Franck Montmessin; Denis Belyaev

A pulse of sulphur dioxide in Venus’s upper atmosphere was observed by the Pioneer Venus spacecraft in the 1970s and 1980s and attributed to volcanism. Recent sulphur dioxide measurements from Venus Express indicate decadal-scale fluctuations in sulphur dioxide above Venus’s cloud tops in an atmosphere that is more dynamic than expected. Sulphur dioxide is a million times more abundant in the atmosphere of Venus than that of Earth, possibly as a result of volcanism on Venus within the past billion years1,2. A tenfold decrease in sulphur dioxide column density above Venus’s clouds measured by the Pioneer Venus spacecraft during the 1970s and 1980s has been interpreted as decline following an episode of volcanogenic upwelling from the lower atmosphere3,4. Here we report that the sulphur dioxide column density above Venus’s clouds decreased by an order of magnitude between 2007 and 2012 using ultraviolet spectrometer data from the SPICAV instrument onboard the Venus Express spacecraft. This decline is similar to observations during the 1980s. We also report strong latitudinal and temporal variability in sulphur dioxide column density that is consistent with supply fluctuations from the lower atmosphere. We suggest that episodic sulphur dioxide injections to the cloud tops may be caused either by periods of increased buoyancy of volcanic plumes, or, in the absence of active volcanism, by long-period oscillations of the general atmospheric circulation. The 30-year observational record from Pioneer Venus and Venus Express confirms that episodic injections of sulphur dioxide above the clouds recur on decadal timescales, suggesting a more variable atmosphere than expected.


Applied Optics | 2008

In-flight performance and calibration of SPICAV SOIR onboard Venus Express

Arnaud Mahieux; Sophie Berkenbosch; Roland Clairquin; Didier Fussen; N. Mateshvili; Eddy Neefs; D. Nevejans; Bojan Ristic; Ann Carine Vandaele; Valérie Wilquet; Denis Belyaev; Anna Fedorova; Oleg Korablev; Eric Villard; Franck Montmessin

Solar occultation in the infrared, part of the Spectoscopy for Investigation of Characteristics of the Atmosphere of Venus (SPICAV) instrument onboard Venus Express, combines an echelle grating spectrometer with an acousto-optic tunable filter (AOTF). It performs solar occultation measurements in the IR region at high spectral resolution. The wavelength range probed allows a detailed chemical inventory of Venuss atmosphere above the cloud layer, highlighting the vertical distribution of gases. A general description of the instrument and its in-flight performance is given. Different calibrations and data corrections are investigated, in particular the dark current and thermal background, the nonlinearity and pixel-to-pixel variability of the detector, the sensitivity of the instrument, the AOTF properties, and the spectral calibration and resolution.


Optics Express | 2009

A new method for determining the transfer function of an acousto optical tunable filter.

Arnaud Mahieux; Valérie Wilquet; Rachel Drummond; Denis Belyaev; A. Federova; Ann Carine Vandaele

The current study describes the determination of the transfer function of an Acousto Optical Tunable Filter from the in-flight solar observations of the SOIR instrument on board Venus Express. An approach is proposed in order to reconstruct the transfer function profile from the analysis of various solar lines. Moreover this technique allows the determination of the evolution of the transfer function as a function of the AOTF radio frequency.


Optics Express | 2013

Improved calibration of SOIR/Venus Express spectra

Ann Carine Vandaele; Arnaud Mahieux; Séverine Robert; Sophie Berkenbosch; Roland Clairquin; Rachel Drummond; Vincent Letocart; Eddy Neefs; Bojan Ristic; Valérie Wilquet; Frédéric Colomer; Denis Belyaev

The SOIR instrument on board the ESA Venus Express mission has been operational since the insertion of the satellite around Venus in April 2006. Since then, it has delivered high quality IR solar occultation spectra of the atmosphere of Venus. The different steps from raw spectra to archived data are described and explained in detail here. These consist of corrections for the dark current and for the non-linearity of the detector; removing bad pixels, as well as deriving noise. The spectral calibration procedure is described, along with all ancillary data necessary for the understanding and interpretation of the SOIR data. These include the full characterization of the AOTF filter, one of the major elements of the instrument. All these data can be found in the ESA PSA archive.


Applied Optics | 2013

Compact echelle spectrometer for occultation sounding of the Martian atmosphere: design and performance.

Oleg Korablev; Franck Montmessin; Alexander Trokhimovsky; Anna Fedorova; Alexander Kiselev; Jean-Pierre Goultail; Denis Belyaev; A. V. Stepanov; A. Titov; Yurii K. Kalinnikov

The echelle spectrometer TIMM-2 is the instrument developed for the unsuccessful Russian mission Phobos-Grunt. The instrument was dedicated to solar occultation studies of the Martian atmosphere by measuring the amount of methane, by sensitive measuring of other minor constituents, and by profiling the D/H ratio and the aerosol structure. The spectral range of the instrument is 2300-4100 nm, the spectral resolving power λ/Δλ exceeds 25,000, and the field of view is 1.5×21 arc min. The spectra are measured in narrow spectral intervals, corresponding to discreet diffraction orders. One measurement cycle includes several spectral intervals. To study the vertical profiles of aerosol, the instrument incorporates four photometers in the UV to near-IR spectral range. The mass of the instrument is 2800 g, and its power consumption is 12 W. One complete flight model remains available after the Phobos-Grunt launch. We discuss the science objectives of the occultation experiment for the case of Mars, the implementation of the instrument, and the results of ground calibrations.


Optics Express | 2013

Characterization of the stray light in a space borne atmospheric AOTF spectrometer

Oleg Korablev; Anna Fedorova; Eric Villard; Lilian Joly; Alexander Kiselev; Denis Belyaev

Acousto-optic tunable filter (AOTF) spectrometers are being criticized for spectral leakage, distant side lobes of their spectral response function (SRF), or the stray light. SPICAM-IR is the AOTF spectrometer in the range of 1000-1700 nm with a resolving power of 1800-2200 operating on the Mars Express interplanetary probe. It is primarily dedicated to measurements of water vapor in the Martian atmosphere. SPICAM H(2)O retrievals are generally lower than simultaneous measurements with other instruments, the stray light suggested as a likely explanation. We report the results of laboratory measurements of water vapor in quantity characteristic for the Mars atmosphere (2-15 precipitable microns) with the Flight Spare model of SPICAM-IR. We simulated the measured spectra with HITRAN-based synthetic model, varying the water abundance, and the level of the stray light, and compared the results to the known amount of water in the cell. The retrieved level of the stray light, assumed uniformly spread over the spectral range, is below 1-1.3·10(-4). The stray may be responsible for the underestimation of water abundance of up to 8%, or 0.6 pr. µm. The account for the stray light removes the bias completely; the overall accuracy to measure water vapor is ~0.2 pr. µm. We demonstrate that the AOTF spectrometer dependably measures the water abundance and can be employed as an atmospheric spectrometer.


Optics Express | 2017

Compact acousto-optic imaging spectro-polarimeter for mineralogical investigations in the near infrared

Denis Belyaev; Konstantin B. Yushkov; Sergey P. Anikin; Yuri S. Dobrolenskiy; Aleksander Laskin; S. N. Mantsevich; Vladimir Ya. Molchanov; S. A. Potanin; Oleg Korablev

Spectral imaging in the near infrared is a promising method for mineralogy analysis, in particular well-suited for airless celestial objects or those with faint atmospheres. Additional information about structure and composition of minerals can be obtained using spectral polarimetry with high spatial resolution. We report design and performance of laboratory prototype for a compact near infrared acousto-optic imaging spectro-polarimeter, which may be implemented for remote or close-up analysis of planetary surfaces. The prototype features telecentric optics, apochromatic design over the bandwidth of 0.8-1.75 µm, and simultaneous imaging of two orthogonal linear polarizations of the same scene with a single FPA detector. When validating the scheme, reflectance spectra of several minerals were measured with the spectral resolution of 100 cm-1 (10 nm passband at 1 µm). When imaging samples, the spatial resolution of 0.6 mm at the target distance of one meter was reached. It corresponds to 100 by 100 diffraction-limited elements resolved at the focal plane array (FPA) for each of the two light polarizations. A similar prototype is also being designed for the spectral range from 1.7 to 3.5 µm. This type of the spectro-polarimeter is considered as a potential reconnaissance and analysis tool for future planetary or moon landers and rovers.


Applied Optics | 2018

Acousto-optic tunable filter spectrometers in space missions [Invited]

Oleg Korablev; Denis Belyaev; Yuri S. Dobrolenskiy; Alexander Trokhimovskiy; Yuri Kalinnikov

Spectrometers employing acousto-optic tunable filters (AOTFs) rapidly gain popularity in space, and in particular on interplanetary missions. They allow for reducing volume, mass, and complexity of the instrumentation. To date, space operations of 11 AOTF spectrometers are reported in the literature. They were used for analyzing ocean color, greenhouse gases, atmospheres of Mars and Venus, and for lunar mineralogy. More instruments for the Moon, Mars, and asteroid mineralogy are in flight, awaiting launch, or in the state of advanced development. The AOTFs are used in point (pencil-beam) spectrometers for selecting echelle diffraction orders, or in hyper-spectral imagers and microscopes. We review the AOTF-employing devices flown in space or ready to set off. The paper considers basic principles of the AOTF and science applications of the AOTF spectrometers, and describes developed instruments in some detail. We also address some advanced developments for future missions and plans. In addition, we discuss lessons learned during instrument design, build, calibration, and exploitation, and advantages and limitations in implementing the AOTF-based systems in space instrumentation.


Journal of Geophysical Research | 2008

HDO and H2O vertical distributions and isotopic ratio in the Venus mesosphere by Solar Occultation at Infrared spectrometer on board Venus Express

Anna Fedorova; Oleg Korablev; Ann Carine Vandaele; Denis Belyaev; Arnaud Mahieux; Eddy Neefs; W. V. Wilquet; Rachel Drummond; Franck Montmessin; Eric Villard

Collaboration


Dive into the Denis Belyaev's collaboration.

Top Co-Authors

Avatar

Oleg Korablev

Moscow Institute of Physics and Technology

View shared research outputs
Top Co-Authors

Avatar

Anna Fedorova

Moscow Institute of Physics and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Franck Montmessin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Arnaud Mahieux

Belgian Institute for Space Aeronomy

View shared research outputs
Top Co-Authors

Avatar

Valérie Wilquet

Belgian Institute for Space Aeronomy

View shared research outputs
Top Co-Authors

Avatar

Emmanuel Marcq

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Eddy Neefs

Belgian Institute for Space Aeronomy

View shared research outputs
Top Co-Authors

Avatar

Rachel Drummond

Belgian Institute for Space Aeronomy

View shared research outputs
Top Co-Authors

Avatar

Franck Lefèvre

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge