Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Denis C. Guttridge is active.

Publication


Featured researches published by Denis C. Guttridge.


Molecular and Cellular Biology | 1999

NF-κB controls cell growth and differentiation through transcriptional regulation of cyclin D1

Denis C. Guttridge; Chris Albanese; Julie Y. Reuther; Richard G. Pestell; Albert S. Baldwin

ABSTRACT Accumulating evidence implicates the transcription factor NF-κB as a positive mediator of cell growth, but the molecular mechanism(s) involved in this process remains largely unknown. Here we use both a skeletal muscle differentiation model and normal diploid fibroblasts to gain insight into how NF-κB regulates cell growth and differentiation. Results obtained with the C2C12 myoblast cell line demonstrate that NF-κB functions as an inhibitor of myogenic differentiation. Myoblasts generated to lack NF-κB activity displayed defects in cellular proliferation and cell cycle exit upon differentiation. An analysis of cell cycle markers revealed that NF-κB activates cyclin D1 expression, and the results showed that this regulatory pathway is one mechanism by which NF-κB inhibits myogenesis. NF-κB regulation of cyclin D1 occurs at the transcriptional level and is mediated by direct binding of NF-κB to multiple sites in the cyclin D1 promoter. Using diploid fibroblasts, we demonstrate that NF-κB is required to induce cyclin D1 expression and pRb hyperphosphorylation and promote G1-to-S progression. Consistent with results obtained with the C2C12 differentiation model, we show that NF-κB also promotes cell growth in embryonic fibroblasts, correlating with its regulation of cyclin D1. These data therefore identify cyclin D1 as an important transcriptional target of NF-κB and reveal a mechanism to explain how NF-κB is involved in the early phases of the cell cycle to regulate cell growth and differentiation.


Molecular and Cellular Biology | 1999

NF-κB Induces Expression of the Bcl-2 Homologue A1/Bfl-1 To Preferentially Suppress Chemotherapy-Induced Apoptosis

Cun-Yu Wang; Denis C. Guttridge; Marty W. Mayo; Albert S. Baldwin

ABSTRACT Recent evidence indicates that the transcription factor NF-κB is a major effector of inducible antiapoptotic mechanisms. For example, it was shown that NF-κB activation suppresses the activation of caspase 8, the apical caspase in tumor necrosis factor (TNF) receptor family signaling cascades, through the transcriptional regulation of certain TRAF and IAP proteins. However, it was unknown whether NF-κB controls other key regulatory mechanisms in apoptosis. Here we show that NF-κB activation suppresses mitochondrial release of cytochrome cthrough the activation of the Bcl-2 family member A1/Bfl-1. The restoration of A1 in NF-κB null cells diminished TNF-induced apoptosis by reducing the release of proapoptotic cytochromec from mitochondria. In addition, A1 potently inhibited etoposide-induced apoptosis by inhibiting the release of cytochromec and by blocking caspase 3 activation. Our findings demonstrate that A1 is an important antiapoptotic gene controlled by NF-κB and establish that the prosurvival function of NF-κB can be manifested at multiple levels.


Cancer Cell | 2008

NF-κB–YY1–miR-29 Regulatory Circuitry in Skeletal Myogenesis and Rhabdomyosarcoma

Huating Wang; Ramiro Garzon; Hao Sun; Katherine J. Ladner; Ravi K. Singh; Jason M. Dahlman; Alfred S.L. Cheng; Brett M. Hall; Stephen J. Qualman; Dawn S. Chandler; Carlo M. Croce; Denis C. Guttridge

Studies support the importance of microRNAs in physiological and pathological processes. Here we describe the regulation and function of miR-29 in myogenesis and rhabdomyosarcoma (RMS). Results demonstrate that in myoblasts, miR-29 is repressed by NF-kappaB acting through YY1 and the Polycomb group. During myogenesis, NF-kappaB and YY1 downregulation causes derepression of miR-29, which in turn accelerates differentiation by targeting its repressor YY1. However, in RMS cells and primary tumors that possess impaired differentiation, miR-29 is epigenetically silenced by an activated NF-kappaB-YY1 pathway. Reconstitution of miR-29 in RMS in mice inhibits tumor growth and stimulates differentiation, suggesting that miR-29 acts as a tumor suppressor through its promyogenic function. Together, these results identify a NF-kappaB-YY1-miR-29 regulatory circuit whose disruption may contribute to RMS.


Journal of Clinical Investigation | 2004

Cancer cachexia is regulated by selective targeting of skeletal muscle gene products

Swarnali Acharyya; Katherine J. Ladner; Lori L. Nelsen; Jeffrey S. Damrauer; Peter J. Reiser; Steven Swoap; Denis C. Guttridge

Cachexia is a syndrome characterized by wasting of skeletal muscle and contributes to nearly one-third of all cancer deaths. Cytokines and tumor factors mediate wasting by suppressing muscle gene products, but exactly which products are targeted by these cachectic factors is not well understood. Because of their functional relevance to muscle architecture, such targets are presumed to represent myofibrillar proteins, but whether these proteins are regulated in a general or a selective manner is also unclear. Here we demonstrate, using in vitro and in vivo models of muscle wasting, that cachectic factors are remarkably selective in targeting myosin heavy chain. In myotubes and mouse muscles, TNF-alpha plus IFN-gamma strongly reduced myosin expression through an RNA-dependent mechanism. Likewise, colon-26 tumors in mice caused the selective reduction of this myofibrillar protein, and this reduction correlated with wasting. Under these conditions, however, loss of myosin was associated with the ubiquitin-dependent proteasome pathway, which suggests that mechanisms used to regulate the expression of muscle proteins may be cachectic factor specific. These results shed new light on cancer cachexia by revealing that wasting does not result from a general downregulation of muscle proteins but rather is highly selective as to which proteins are targeted during the wasting state.


Cell Metabolism | 2012

Cancer Cachexia: Mediators, Signaling, and Metabolic Pathways

Kenneth Fearon; David J. Glass; Denis C. Guttridge

Cancer cachexia is characterized by a significant reduction in body weight resulting predominantly from loss of adipose tissue and skeletal muscle. Cachexia causes reduced cancer treatment tolerance and reduced quality and length of life, and remains an unmet medical need. Therapeutic progress has been impeded, in part, by the marked heterogeneity of mediators, signaling, and metabolic pathways both within and between model systems and the clinical syndrome. Recent progress in understanding conserved, molecular mechanisms of skeletal muscle atrophy/hypertrophy has provided a downstream platform for circumventing the variations and redundancy in upstream mediators and may ultimately translate into new targeted therapies.


Journal of Clinical Investigation | 2007

Interplay of IKK/NF-κB signaling in macrophages and myofibers promotes muscle degeneration in Duchenne muscular dystrophy

Swarnali Acharyya; S. Armando Villalta; Nadine Bakkar; Tepmanas Bupha-Intr; Paul M. L. Janssen; Micheal Carathers; Zhi-Wei Li; Amer A. Beg; Sankar Ghosh; Zarife Sahenk; Michael Weinstein; Katherine L. Gardner; Jill A. Rafael-Fortney; Michael Karin; James G. Tidball; Albert S. Baldwin; Denis C. Guttridge

Duchenne muscular dystrophy (DMD) is a lethal X-linked disorder associated with dystrophin deficiency that results in chronic inflammation and severe skeletal muscle degeneration. In DMD mouse models and patients, we find that IkappaB kinase/NF-kappaB (IKK/NF-kappaB) signaling is persistently elevated in immune cells and regenerative muscle fibers. Ablation of 1 allele of the p65 subunit of NF-kappaB was sufficient to improve pathology in mdx mice, a model of DMD. In addition, conditional deletion of IKKbeta in mdx mice elucidated that NF-kappaB functions in activated macrophages to promote inflammation and muscle necrosis and in skeletal muscle fibers to limit regeneration through the inhibition of muscle progenitor cells. Furthermore, specific pharmacological inhibition of IKK resulted in improved pathology and muscle function in mdx mice. Collectively, these results underscore the critical role of NF-kappaB in the progression of muscular dystrophy and suggest the IKK/NF-kappaB signaling pathway as a potential therapeutic target for DMD.


Molecular and Cellular Biology | 2004

Role for Activating Transcription Factor 3 in Stress-Induced β-Cell Apoptosis

Matthew G. Hartman; Dan Lu; Mi Lyang Kim; Gary J. Kociba; Tala Shukri; Jean Buteau; Xiaozhong Wang; Wendy L. Frankel; Denis C. Guttridge; Marc Prentki; Shane T. Grey; David Ron; Tsonwin Hai

ABSTRACT Activating transcription factor 3 (ATF3) is a stress-inducible gene and encodes a member of the ATF/CREB family of transcription factors. However, the physiological significance of ATF3 induction by stress signals is not clear. In this report, we describe several lines of evidence supporting a role of ATF3 in stress-induced β-cell apoptosis. First, ATF3 is induced in β cells by signals relevant to β-cell destruction: proinflammatory cytokines, nitric oxide, and high concentrations of glucose and palmitate. Second, induction of ATF3 is mediated in part by the NF-κB and Jun N-terminal kinase/stress-activated protein kinase signaling pathways, two stress-induced pathways implicated in both type 1 and type 2 diabetes. Third, transgenic mice expressing ATF3 in β cells develop abnormal islets and defects secondary to β-cell deficiency. Fourth, ATF3 knockout islets are partially protected from cytokine- or nitric oxide-induced apoptosis. Fifth, ATF3 is expressed in the islets of patients with type 1 or type 2 diabetes, and in the islets of nonobese diabetic mice that have developed insulitis or diabetes. Taken together, our results suggest ATF3 to be a novel regulator of stress-induced β-cell apoptosis.


Journal of Immunology | 2007

Apigenin Blocks Lipopolysaccharide-Induced Lethality In Vivo and Proinflammatory Cytokines Expression by Inactivating NF-κB through the Suppression of p65 Phosphorylation

Courtney Nicholas; Sanjay Batra; Melissa Vargo; Oliver H. Voss; Mikhail A. Gavrilin; Mark D. Wewers; Denis C. Guttridge; Erich Grotewold; Andrea I. Doseff

LPS stimulates monocytes/macrophages through the activation of signaling events that modulate the production of inflammatory cytokines. Apigenin, a flavonoid abundantly found in fruits and vegetables, exhibits anti-proliferative and anti-inflammatory activities through poorly defined mechanisms. In this study, we demonstrate that apigenin inhibits the production of proinflammatory cytokines IL-1β, IL-8, and TNF in LPS-stimulated human monocytes and mouse macrophages. The inhibitory effect on proinflammatory cytokine production persists even when apigenin is administered after LPS stimulation. Transient transfection experiments using NF-κB reporter constructs indicated that apigenin inhibits the transcriptional activity of NF-κB in LPS-stimulated mouse macrophages. The classical proteasome-dependent degradation of the NF-κB inhibitor IκBα was observed in apigenin LPS-stimulated human monocytes. Using EMSA, we found that apigenin does not alter NF-κB-DNA binding activity in human monocytes. Instead we show that apigenin, as part of a non-canonical pathway, regulates NF-κB activity through hypophosphorylation of Ser536 in the p65 subunit and the inactivation of the IKK complex stimulated by LPS. The decreased phosphorylation on Ser536 observed in LPS-stimulated mouse macrophages treated with apigenin was overcome by the over-expression of IKKβ. In addition, our studies indicate that apigenin inhibits in vivo LPS-induced TNF and the mortality induced by lethal doses of LPS. Collectively, these findings suggest a molecular mechanism by which apigenin suppresses inflammation and modulates the immune response in vivo.


Journal of Cell Biology | 2002

Wnt signaling promotes oncogenic transformation by inhibiting c-Myc–induced apoptosis

Zongbing You; Daniel Saims; Shaoqiong Chen; Zhaocheng Zhang; Denis C. Guttridge; Kun-Liang Guan; Ormond A. MacDougald; Anthony M. C. Brown; Gerard I. Evan; Jan Kitajewski; Cun-Yu Wang

Aberrant activation of the Wnt/β-catenin signaling pathway is associated with numerous human cancers and often correlates with the overexpression or amplification of the c-myc oncogene. Paradoxical to the cellular transformation potential of c-Myc is its ability to also induce apoptosis. Using an inducible c-MycER expression system, we found that Wnt/β-catenin signaling suppressed apoptosis by inhibiting c-Myc–induced release of cytochrome c and caspase activation. Both cyclooxygenase 2 and WISP-1 were identified as effectors of the Wnt-mediated antiapoptotic signal. Soft agar assays showed that neither c-Myc nor Wnt-1 alone was sufficient to induce cellular transformation, but that Wnt and c-Myc coordinated in inducing transformation. Furthermore, coexpression of Wnt-1 and c-Myc induced high-frequency and rapid tumor growth in nude mice. Extensive apoptotic bodies were characteristic of c-Myc–induced tumors, but not tumors induced by coactivation of c-Myc and Wnt-1, indicating that the antiapoptotic function of Wnt-1 plays a critical role in the synergetic action between c-Myc and Wnt-1. These results elucidate the molecular mechanisms by which Wnt/β-catenin inhibits apoptosis and provide new insight into Wnt signaling-mediated oncogenesis.


Journal of Clinical Investigation | 2012

NF-κB inhibition delays DNA damage–induced senescence and aging in mice

Jeremy S. Tilstra; Andria Rasile Robinson; Jin Wang; Siobhán Q. Gregg; Cheryl L. Clauson; Daniel P. Reay; Luigi Aurelio Nasto; Claudette M. St. Croix; Arvydas Usas; Nam Vo; Johnny Huard; Paula R. Clemens; Donna B. Stolz; Denis C. Guttridge; Simon C. Watkins; George A. Garinis; Yinsheng Wang; Laura J. Niedernhofer; Paul D. Robbins

The accumulation of cellular damage, including DNA damage, is thought to contribute to aging-related degenerative changes, but how damage drives aging is unknown. XFE progeroid syndrome is a disease of accelerated aging caused by a defect in DNA repair. NF-κB, a transcription factor activated by cellular damage and stress, has increased activity with aging and aging-related chronic diseases. To determine whether NF-κB drives aging in response to the accumulation of spontaneous, endogenous DNA damage, we measured the activation of NF-κB in WT and progeroid model mice. As both WT and progeroid mice aged, NF-κB was activated stochastically in a variety of cell types. Genetic depletion of one allele of the p65 subunit of NF-κB or treatment with a pharmacological inhibitor of the NF-κB-activating kinase, IKK, delayed the age-related symptoms and pathologies of progeroid mice. Additionally, inhibition of NF-κB reduced oxidative DNA damage and stress and delayed cellular senescence. These results indicate that the mechanism by which DNA damage drives aging is due in part to NF-κB activation. IKK/NF-κB inhibitors are sufficient to attenuate this damage and could provide clinical benefit for degenerative changes associated with accelerated aging disorders and normal aging.

Collaboration


Dive into the Denis C. Guttridge's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nadine Bakkar

St. Joseph's Hospital and Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Swarnali Acharyya

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Charles Keller

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge