Denis Defrere
University of Arizona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Denis Defrere.
Astronomy and Astrophysics | 2013
Olivier Absil; Denis Defrere; V. Coudé du Foresto; E. Di Folco; A. Mérand; J.-C. Augereau; S. Ertel; Charles Hanot; P. Kervella; B. Mollier; Nicholas William Scott; Xiao Che; John D. Monnier; Nathalie D. Thureau; Peter G. Tuthill; Theo A. ten Brummelaar; H. McAlister; J. Sturmann; L. Sturmann; Nils H. Turner
Context. Dust is expected to be ubiquitous in extrasolar planetary systems owing to the dynamical activity of minor bodies. Inner dust populations are, however, still poorly known because of the high contrast and small angular separation with respect to their host star, and yet, a proper characterisation of exozodiacal dust is mandatory for the design of future Earth-like planet imaging missions. Aims. We aim to determine the level of near-infrared exozodiacal dust emission around a sample of 42 nearby main sequence stars with spectral types ranging from A to K and to investigate its correlation with various stellar parameters and with the presence of cold dust belts. Methods. We use high-precision K-band visibilities obtained with the FLUOR interferometer on the shortest baseline of the CHARA array. The calibrated visibilities are compared with the expected visibility of the stellar photosphere to assess whether there is an additional, fully resolved circumstellar emission source. Results. Near-infrared circumstellar emission amounting to about 1% of the stellar flux is detected around 13 of our 42 target stars. Follow-up observations showed that one of them (eps Cep) is associated with a stellar companion, while another one was detected around what turned out to be a giant star (kap CrB). The remaining 11 excesses found around single main sequence stars are most probably associated with hot circumstellar dust, yielding an overall occurrence rate of 28 +8 % for our (biased) sample. We show that the occurrence rate of bright exozodiacal discs correlates with spectral type, K-band excesses being more frequent around A-type stars. It also correlates with the presence of detectable far-infrared excess emission in the case of solar-type stars. Conclusions. This study provides new insight into the phenomenon of bright exozodiacal discs, showing that hot dust populations are probably linked to outer dust reservoirs in the case of solar-type stars. For A-type stars, no clear conclusion can be made regarding the origin of the detected near-infrared excesses.
The Astrophysical Journal | 2014
Andrew J. Skemer; Mark S. Marley; Philip M. Hinz; Katie M. Morzinski; Michael F. Skrutskie; Jarron M. Leisenring; Laird M. Close; Didier Saumon; Vanessa P. Bailey; Runa Briguglio; Denis Defrere; Simone Esposito; Katherine B. Follette; John M. Hill; Jared R. Males; Alfio Puglisi; Timothy J. Rodigas; Marco Xompero
Gas-giant planets emit a large fraction of their light in the mid-infrared (≳3 μm), where photometry and spectroscopy are critical to our understanding of the bulk properties of extrasolar planets. Of particular importance are the L- and M-band atmospheric windows (3-5 μm), which are the longest wavelengths currently accessible to ground-based, high-contrast imagers. We present binocular LBT adaptive optics (AO) images of the HR 8799 planetary system in six narrow-band filters from 3 to 4 μm, and a Magellan AO image of the 2M1207 planetary system in a broader 3.3 μm band. These systems encompass the five known exoplanets with luminosities consistent with L → T transition brown dwarfs. Our results show that the exoplanets are brighter and have shallower spectral slopes than equivalent temperature brown dwarfs in a wavelength range that contains the methane fundamental absorption feature (spanned by the narrow-band filters and encompassed by the broader 3.3 μm filter). For 2M1207 b, we find that thick clouds and non-equilibrium chemistry caused by vertical mixing can explain the objects appearance. For the HR 8799 planets, we present new models that suggest the atmospheres must have patchy clouds, along with non-equilibrium chemistry. Together, the presence of a heterogeneous surface andmorexa0» vertical mixing presents a picture of dynamic planetary atmospheres in which both horizontal and vertical motions influence the chemical and condensate profiles.«xa0less
Astronomy and Astrophysics | 2013
J. Lebreton; R. Van Lieshout; J.-C. Augereau; Olivier Absil; B. Mennesson; M. Kama; C. Dominik; Amy Bonsor; J. Vandeportal; H. Beust; Denis Defrere; S. Ertel; V. Faramaz; Philip M. Hinz; Q. Kral; A.-M. Lagrange; W. Liu; Philippe Thebault
Context. Debris disks are thought to be extrasolar analogs to the solar system planetesimal belts. The star Fomalhaut harbors a cold debris belt at 140 AU comparable to the Edgeworth-Kuiper belt, as well as evidence of a warm dust component, unresolved by singledish telescopes, which is suspected of being a bright analog to the solar system’s zodiacal dust. Aims. Interferometric observations obtained with the VLTI/VINCI instrument and the Keck Interferometer Nuller have identified nearand mid-infrared excesses attributed respectively to hot and warm exozodiacal dust residing in the inner few AU of the Fomalhaut environment. We aim to characterize the properties of this double inner dust belt and to unveil its origin. Methods. We performed parametric modeling of the exozodiacal disk (“exozodi”) using the GRaTeR radiative transfer code to reproduce the interferometric data, complemented by mid- to far-infrared photometric measurements from Spitzer and Herschel �� . A detailed treatment of sublimation temperatures was introduced to explore the hot population at the size-dependent sublimation rim. We then used an analytical approach to successively testing several source mechanisms for the dust and suspected parent bodies. Results. A good fit to the multiwavelength data is found by two distinct dust populations: (1) a population of very small (0.01 to 0.5 μm), hence unbound, hot dust grains confined in a narrow region (∼0.1–0.3 AU) at the sublimation rim of carbonaceous material; (2) a population of bound grains at ∼2 AU that is protected from sublimation and has a higher mass despite its fainter flux level. We propose that the hot dust is produced by the release of small carbon grains following the disruption of dust aggregates that originate in the warm component. A mechanism, such as gas braking, is required to further confine the small grains for a long enough time. In situ dust production could hardly be ensured for the age of the star, so we conclude that the observed amount of dust is triggered by intense dynamical activity. Conclusions. Fomalhaut may be representative of exozodis that are currently being surveyed at near and mid-infrared wavelengths worldwide. We propose a framework for reconciling the “hot exozodi phenomenon” with theoretical constraints: the hot component of Fomalhaut is likely the “tip of the iceberg” since it could originate in the more massive, but fainter, warm dust component residing near the ice line. This inner disk exhibits interesting morphology and can be considered a prime target for future exoplanet research.
Astronomy and Astrophysics | 2014
S. Ertel; Olivier Absil; Denis Defrere; J.-B. Le Bouquin; J.-C. Augereau; Lindsay Marion; N. Blind; Amy Bonsor; G. Bryden; J. Lebreton; J. Milli
Context. Detecting and characterizing circumstellar dust is a way to study the architecture and evolution of planetary systems. Cold dust in debris disks only traces the outer regions. Warm and hot exozodiacal dust needs to be studied in order to trace regions close to the habitable zone. n nAims. We aim to determine the prevalence and to constrain the properties of hot exozodiacal dust around nearby main-sequence stars. n nMethods. We searched a magnitude-limited (H ≤ 5) sample of 92 stars for bright exozodiacal dust using our VLTI visitor instrument PIONIER in the H band. We derived statistics of the detection rate with respect to parameters, such as the stellar spectral type and age or the presence of a debris disk in the outer regions of the systems. We derived more robust statistics by combining our sample with the results from our CHARA/FLUOR survey in the K band. In addition, our spectrally dispersed data allowed us to put constraints on the emission mechanism and the dust properties in the detected systems. n nResults. We find an overall detection rate of bright exozodiacal dust in the H band of 11% (9 out of 85 targets) and three tentative detections. The detection rate decreases from early type to late type stars and increases with the age of the host star. We do not confirm the tentative correlation between the presence of cold and hot dust found in our earlier analysis of the FLUOR sample alone. Our spectrally dispersed data suggest that either the dust is extremely hot or the emission is dominated by the scattered light in most cases. The implications of our results for the target selection of future terrestrial planet-finding missions using direct imaging are discussed.
Astronomy and Astrophysics | 2011
Denis Defrere; Olivier Absil; J.-C. Augereau; E. Di Folco; Jean-Philippe Berger; V. Coudé du Foresto; P. Kervella; J.-B. Le Bouquin; J. Lebreton; R. Millan-Gabet; John D. Monnier; J. Olofsson; Wesley A. Traub
Context. Although debris discs have been detected around a significant number of main-sequence stars, only a few of them are known to harbour hot dust in their inner part where terrestrial planets may have formed. Thanks to infrared interferometric observations, it is possible to obtain a direct measurement of these regions, which are of prime importance for preparing future exo-Earth characterisation missions. n nAims. We resolve the exozodiacal dust disc around Vega with the help of infrared stellar interferometry and estimate the integrated H-band flux originating from the first few AUs of the debris disc. n nMethods. Precise H-band interferometric measurements were obtained on Vega with the 3-telescope IOTA/IONIC interferometer (Mount Hopkins, Arizona). Thorough modelling of both interferometric data (squared visibility and closure phase) and spectral energy distribution was performed to constrain the nature of the near-infrared excess emission. n nResults. Resolved circumstellar emission within ~6u2009AU from Vega is identified at the 3-σ level. The most straightforward scenario consists in a compact dust disc producing a thermal emission that is largely dominated by small grains located between 0.1 and 0.3u2009AU from Vega and accounting for 1.23 ± 0.45% of the near-infrared stellar flux for our best-fit model. This flux ratio is shown to vary slightly with the geometry of the model used to fit our interferometric data (variations within ± 0.19%). n nConclusions. The presence of hot exozodiacal dust in the vicinity of Vega, initially revealed by K-band CHARA/FLUOR observations, is confirmed by our H-band IOTA/IONIC measurements. Whereas the origin of the dust is still uncertain, its presence and the possible connection with the outer disc suggest that the Vega system is currently undergoing major dynamical perturbations.
Astronomy and Astrophysics | 2015
A.-L. Maire; A. Skemer; P. Hinz; S. Desidera; Simone Esposito; R. Gratton; Francesco Marzari; M. F. Skrutskie; Beth A. Biller; Denis Defrere; Vanessa P. Bailey; Jarron M. Leisenring; Daniel Apai; M. Bonnefoy; Wolfgang Brandner; Esther Buenzli; R. U. Claudi; Laird M. Close; Justin R. Crepp; R. J. De Rosa; J. A. Eisner; Jonathan J. Fortney; T. Henning; Karl-Heinz Hofmann; T. Kopytova; Jared R. Males; D. Mesa; Katie M. Morzinski; Apurva Oza; Jenny Patience
© ESO, 2015. Context. Astrometric monitoring of directly imaged exoplanets allows the study of their orbital parameters and system architectures. Because most directly imaged planets have long orbital periods (>20 AU), accurate astrometry is challenging when based on data acquired on timescales of a few years and usually with different instruments. The LMIRCam camera on the Large Binocular Telescope is being used for the LBT Exozodi Exoplanet Common Hunt (LEECH) survey to search for and characterize young and adolescent exoplanets in L′ band (3.8 μm), including their system architectures. Aims. We first aim to provide a good astrometric calibration of LMIRCam. Then, we derive new astrometry, test the predictions of the orbital model of 8:4:2:1 mean motion resonance proposed for the system, and perform new orbital fitting of the HR 8799 bcde planets. We also present deep limits on a putative fifth planet inside the known planets. Methods. We use observations of HR 8799 and the Θ1 Ori C field obtained during the same run in October 2013. Results. We first characterize the distortion of LMIRCam. We determine a platescale and a true north orientation for the images of 10.707±0.012 mas/pix and -0.430±0.076°, respectively. The errors on the platescale and true north orientation translate into astrometric accuracies at a separation of 1′′ of 1.1 mas and 1.3 mas, respectively. The measurements for all planets agree within 3σ with a predicted ephemeris. The orbital fitting based on the new astrometric measurements favors an architecture for the planetary system based on 8:4:2:1 mean motion resonance. The detection limits allow us to exclude a fifth planet slightly brighter or more massive than HR 8799 b at the location of the 2:1 resonance with HR 8799 e (∼9.5 AU) and about twice as bright as HR 8799 cde at the location of the 3:1 resonance with HR 8799 e (∼7.5 AU).
The Astrophysical Journal | 2016
Andrew J. Skemer; Caroline V. Morley; Neil Zimmerman; Michael F. Skrutskie; Jarron M. Leisenring; Esther Buenzli; M. Bonnefoy; Vanessa P. Bailey; Philip M. Hinz; Denis Defrere; Simone Esposito; Daniel Apai; Beth A. Biller; Wolfgang Brandner; Laird M. Close; Justin R. Crepp; Robert J. De Rosa; S. Desidera; J. A. Eisner; Jonathan J. Fortney; Richard S. Freedman; Thomas Henning; Karl H. Hofmann; T. Kopytova; Roxana Lupu; Anne Lise Maire; Jared R. Males; Mark S. Marley; Katie M. Morzinski; Apurva Oza
As gas giant planets and brown dwarfs radiate away the residual heat from their formation, they cool through a spectral type transition from L to T, which encompasses the dissipation of cloud opacity and the appearance of strong methane absorption. While there are hundreds of known T-type brown dwarfs, the first generation of directly imaged exoplanets were all Luf0a0type. Recently, Kuzuhara et al. announced the discovery of GJ 504 b, the first T dwarf exoplanet. GJ 504 b provides a unique opportunity to study the atmosphere of a new type of exoplanet with a ∼500 K temperature that bridges the gap between the first directly imaged planets (∼1000 K) and our own solar systemʼs Jupiter (∼130 K). We observed GJ 504 b in three narrow L-band filters (3.71, 3.88, and 4.00 μm), spanning the red end of the broad methane fundamental absorption feature (3.3 μm) as part of the LBTI Exozodi Exoplanet Common Hunt (LEECH) exoplanet imaging survey. By comparing our new photometry and literature photometry with a grid of custom model atmospheres, we were able to fit GJ 504 bʼs unusual spectral energy distribution for the first time. We find that GJ 504 b is welluf0a0fit by models with the following parameters: Teffuf0a0=uf0a0544uf0a0±uf0a010 K, guf0a0<uf0a0600 m s �2 , [M/H]uf0a0=uf0a00.60uf0a0±uf0a00.12, cloud opacity parameter of fseduf0a0=uf0a02–5, Ruf0a0=uf0a00.96uf0a0±uf0a00.07RJup, and log(L)uf0a0=uf0a0�6.13uf0a0±uf0a00.03 Le, implying a hot start mass of 3–30 Mjup for a conservative age range of 0.1–6.5 Gyr. Of particular interest, our model fits suggest that GJ 504 b has a superstellar metallicity. Since planet formation can create objects with nonstellar metallicities, while binary star formation cannot, this result suggests that GJ 504 b formed like a planet, not like a binary companion.
Astronomy and Astrophysics | 2012
Denis Defrere; J. Lebreton; J.-B. Le Bouquin; A.-M. Lagrange; Olivier Absil; J.-C. Augereau; J. Berger; E. Di Folco; S. Ertel; J. Kluska; G. Montagnier; R. Millan-Gabet; Wesley A. Traub; G. Zins
Aims. We aim at resolving the circumstellar environment around β Pic in the near-infrared in order to study the inner planetary system (<200 mas, i.e., ~4 AU). n nMethods. Precise interferometric fringe visibility measurements were obtained over seven spectral channels dispersed across the H band with the four-telescope VLTI/PIONIER interferometer. Thorough analysis of interferometric data was performed to measure the stellar angular diameter and to search for circumstellar material. n nResults. We detected near-infrared circumstellar emission around β Pic that accounts for 1.37% ± 0.16% of the near-infrared stellar flux and that is located within the field-of-view of PIONIER (i.e., ~200u2009mas in radius). The flux ratio between this excess and the photosphere emission is shown to be stable over a period of 1 year and to vary only weakly across the H band, suggesting that the source is either very hot (≳1500 K) or dominated by the scattering of the stellar flux. In addition, we derive the limb-darkened angular diameter of β Pic with an unprecedented accuracy (θ_LD= 0.736 ± 0.019 mas). n nConclusions. The presence of a small H-band excess originating in the vicinity of β Pic is revealed for the first time thanks to the high-precision visibilities enabled by VLTI/PIONIER. This excess emission is likely due to the scattering of stellar light by circumstellar dust and/or the thermal emission from a yet unknown population of hot dust, although hot gas emitting in the continuum cannot be firmly excluded.
Proceedings of SPIE | 2014
Phil Hinz; Vanessa P. Bailey; Denis Defrere; E. Downey; Simone Esposito; John M. Hill; William F. Hoffmann; Jarron M. Leisenring; M. Montoya; T. McMahon; Alfio Puglisi; A. Skemer; M. F. Skrutskie; Vidhya Vaitheeswaran; A. Vaz
The Large Binocular Telescope Interferometer (LBTI) is a strategically important instrument for exploiting the use of the LBT as a 22.7 m telescope. The LBTI has two science cameras (covering the 1.5-5 μm and 8-13 μm atmospheric windows), and a number of observing modes that allow it to carry out a wide range of high-spatial resolution observations. Some simple modes, such as AO imaging, are in routine use. We report here on testing and commissioning of the system for its more ambitious goals as a nulling interferometer and coherent imager. The LBTI will carry out key surveys to Hunt for Observable Signatures of Terrestrial planetary Systems (HOSTS) and an LBTI Exozodi-Exoplanet Common Hunt (LEECH). The current nulling and coherent imaging performance is described.
Proceedings of SPIE | 2014
Andrew J. Skemer; Philip M. Hinz; Simone Esposito; Michael F. Skrutskie; Denis Defrere; Vanessa P. Bailey; Jarron M. Leisenring; Daniel Apai; Beth A. Biller; M. Bonnefoy; Wolfgang Brandner; Esther Buenzli; Laird M. Close; Justin R. Crepp; Robert J. De Rosa; S. Desidera; J. A. Eisner; Jonathan J. Fortney; Thomas Henning; Karl H. Hofmann; T. Kopytova; Anne Lise Maire; Jared R. Males; R. Millan-Gabet; Katie M. Morzinski; Apurva Oza; Jenny Patience; Abhijith Rajan; G. H. Rieke; D. Schertl
In Spring 2013, the LEECH (LBTI Exozodi Exoplanet Common Hunt) survey began its ~130-night campaign from the Large Binocular Telescope (LBT) atop Mt Graham, Arizona. This survey benefits from the many technological achievements of the LBT, including two 8.4-meter mirrors on a single fixed mount, dual adaptive secondary mirrors for high Strehl performance, and a cold beam combiner to dramatically reduce the telescope’s overall background emissivity. LEECH neatly complements other high-contrast planet imaging efforts by observing stars at L’ (3.8 μm), as opposed to the shorter wavelength near-infrared bands (1-2.4 μm) of other surveys. This portion of the spectrum offers deep mass sensitivity, especially around nearby adolescent (~0.1-1 Gyr) stars. LEECH’s contrast is competitive with other extreme adaptive optics systems, while providing an alternative survey strategy. Additionally, LEECH is characterizing known exoplanetary systems with observations from 3-5μm in preparation for JWST.