Denis Delic
Boehringer Ingelheim
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Denis Delic.
Steroids | 2010
Denis Delic; Christian Grosser; Mohamed A. Dkhil; Saleh Al-Quraishy; Frank Wunderlich
Testosterone (T) regulates expression of protein-encoding genes directly through androgen receptor (AR) targeting androgen response element (ARE) in gene promoters or indirectly through non-genotropic mechanisms, but only limited information is available about T effects on expression of gene-regulatory non-coding miRNAs. Here, we investigate the effect of T on miRNA expression profiles in the female mouse liver using miRXplore microarrays and quantitative RT-PCR. T treatment for 3 weeks induced upregulation of the 6 miRNAs miR-22, miR-690, miR-122, let-7A, miR-30D and let-7D, reaching maximal expression at different time-points during T treatment. This upregulation was transient, i.e. it disappeared after T withdrawal for 12 weeks, and it was rather robust since it was not essentially affected by blood-stage infections with Plasmodium chabaudi malaria. In silico analysis revealed an ARE in the miR-122 promoter, while the other 5 miRNAs did not contain any ARE in their 2000bp promoters. The T-induced upregulation of the 6 miRNAs coincided with a downregulation of some of their target protein-encoding genes, the majority of which did incidentally not contain any ARE in their promoters. T treatment did not affect expression of AR and estrogen receptor beta (ERbeta), but significantly downregulated the miR-22 target genes ERalpha and aromatase. This downregulation is presumably not caused by T after its aromatase-mediated conversion to E(2) through ER, but rather by the T-induced upregulation of miR-22. Collectively, our data suggest that T can regulate expression of distinct miRNAs in vivo by both genotropic and non-genotropic mechanisms.
PLOS ONE | 2016
Denis Delic; Claudia Eisele; Ramona Schmid; Patrick Baum; Franziska Wiech; Martin Gerl; Heike Zimdahl; Steven S. Pullen; Richard Urquhart
MicroRNAs (miRNAs) are short non-coding RNA species which are important post-transcriptional regulators of gene expression and play an important role in the pathogenesis of diabetic nephropathy. miRNAs are present in urine in a remarkably stable form packaged in extracellular vesicles, predominantly exosomes. In the present study, urinary exosomal miRNA profiling was conducted in urinary exosomes obtained from 8 healthy controls (C), 8 patients with type II diabetes (T2D) and 8 patients with type II diabetic nephropathy (DN) using Agilent´s miRNA microarrays. In total, the expression of 16 miRNA species was deregulated (>2-fold) in DN patients compared to healthy donors and T2D patients: the expression of 14 miRNAs (miR-320c, miR-6068, miR-1234-5p, miR-6133, miR-4270, miR-4739, miR-371b-5p, miR-638, miR-572, miR-1227-5p, miR-6126, miR-1915-5p, miR-4778-5p and miR-2861) was up-regulated whereas the expression of 2 miRNAs (miR-30d-5p and miR-30e-5p) was down-regulated. Most of the deregulated miRNAs are involved in progression of renal diseases. Deregulation of urinary exosomal miRNAs occurred in micro-albuminuric DN patients but not in normo-albuminuric DN patients. We used qRT-PCR based analysis of the most strongly up-regulated miRNAs in urinary exosomes from DN patients, miRNAs miR-320c and miR-6068. The correlation of miRNA expression and micro-albuminuria levels could be replicated in a confirmation cohort. In conclusion, urinary exosomal miRNA content is altered in type II diabetic patients with DN. Deregulated miR-320c, which might have an impact on the TGF-β-signaling pathway via targeting thrombospondin 1 (TSP-1) shows promise as a novel candidate marker for disease progression in type II DN that should be evaluated in future studies.
Journal of Immunology | 2012
Claudia M. Wunderlich; Denis Delic; Kristina Behnke; Andreas Meryk; Peter Stroehle; Bhagirath Chaurasia; Saleh Al-Quraishy; Frank Wunderlich; Jens C. Brüning; F. Thomas Wunderlich
Circulating IL-6 levels correlate with the severity of blood-stage malaria in humans and mouse models, but the impact of IL-6 classic signaling through membrane IL-6Rα, as well as IL-6 trans-signaling through soluble IL-6Rα, on the outcome of malaria has remained unknown. In this study, we created IL-6Rα–deficient mice that exhibit a 50% survival of otherwise lethal blood-stage malaria of the genus Plasmodium chabaudi. Inducing IL-6 trans-signaling by injection of mouse recombinant soluble IL-6Rα in IL-6Rα–deficient mice restores the lethal outcome to malaria infection. In contrast, inhibition of IL-6 trans-signaling via injection of recombinant sGP130Fc protein in control mice results in a 40% survival rate. Our data demonstrate that IL-6 trans-signaling, rather than classic IL-6 signaling, contributes to malaria-induced lethality in mice, preceded by an increased inflammatory response. Therefore, inhibition of IL-6 trans-signaling may serve as a novel promising therapeutic basis to combat malaria.
Infection and Immunity | 2010
Denis Delic; Ulrich Warskulat; Elena Borsch; Saad Al-Qahtani; Saleh Al-Quraishi; Dieter Häussinger; Frank Wunderlich
ABSTRACT Deletion of the taurine transporter gene (taut) results in lowered levels of taurine, the most abundant amino acid in mammals. Here, we show that taut−/− mice have lost their ability to self-heal blood-stage infections with Plasmodium chabaudi malaria. All taut−/− mice succumb to infections during crisis, while about 90% of the control taut+/+ mice survive. The latter retain unchanged taurine levels even at peak parasitemia. Deletion of taut, however, results in the lowering of circulating taurine levels from 540 to 264 μmol/liter, and infections cause additional lowering to 192 μmol/liter. Peak parasitemia levels in taut−/− mice are approximately 60% higher than those in taut+/+ mice, an elevation that is associated with increased systemic tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β) levels, as well as with liver injuries. The latter manifest as increased systemic ammonia levels, a perturbed capacity to entrap injected particles, and increased expression of genes encoding TNF-α, IL-1β, IL-6, inducible nitric oxide synthase (iNOS), NF-κB, and vitamin D receptor (VDR). Autopsy reveals multiorgan failure as the cause of death for malaria-infected taut−/− mice. Our data indicate that taut-controlled taurine homeostasis is essential for resistance to P. chabaudi malaria. Taurine deficiency due to taut deletion, however, impairs the eryptosis of P. chabaudi-parasitized erythrocytes and expedites increases in systemic TNF-α, IL-1β, and ammonia levels, presumably contributing to multiorgan failure in P. chabaudi-infected taut−/− mice.
Journal of Molecular Endocrinology | 2010
Denis Delic; Nicole Gailus; Hans-Werner Vohr; Mohamed A. Dkhil; Saleh Al-Quraishy; Frank Wunderlich
Testosterone has been previously shown to induce persistent susceptibility to Plasmodium chabaudi malaria in otherwise resistant female C57BL/6 mice. Here, we investigate as to whether this conversion coincides with permanent changes of hepatic gene expression profiles. Female mice aged 10-12 weeks were treated with testosterone for 3 weeks; then, testosterone treatment was discontinued for 12 weeks before challenging with 10⁶ P. chabaudi-infected erythrocytes. Hepatic gene expression was examined after 12 weeks of testosterone withdrawal and after subsequent infection with P. chabaudi at peak parasitemia, using Affymetrix microarrays with 22 ,690 probe sets representing 14, 000 genes. The expression of 54 genes was found to be permanently changed by testosterone, which remained changed during malaria infection. Most genes were involved in liver metabolism: the female-prevalent genes Cyp2b9, Cyp2b13, Cyp3a41, Cyp3a44, Fmo3, Sult2a2, Sult3a1, and BC014805 were repressed, while the male-prevalent genes Cyp2d9, Cyp7b1, Cyp4a10, Ugt2b1, Ugt2b38, Hsd3b5, and Slco1a1 were upregulated. Genes encoding different nuclear receptors were not persistently changed. Moreover, testosterone induced persistent upregulation of genes involved in hepatocellular carcinoma such as Lama3 and Nox4, whereas genes involved in immune response such as Ifnγ and Igk-C were significantly decreased. Our data provide evidence that testosterone is able to induce specific and robust long-term changes of gene expression profiles in the female mouse liver. In particular, those changes, which presumably indicate masculinized liver metabolism and impaired immune response, may be critical for the testosterone-induced persistent susceptibility of mice to P. chabaudi malaria.
Experimental Parasitology | 2011
Mohamed A. Dkhil; Abdel Azeem Abdel-Baki; Denis Delic; Frank Wunderlich; Helmut Sies; Saleh Al-Quraishy
Increasing evidence indicates miRNAs as critical regulators of gene expression, but little information is available for miRNAs in intestinal diseases. Here, we investigated intestinal infections of male Balb/c mice with the coccidian parasite Eimeria papillata. On day 4 after oral infection, mice were shedding 3150 ± 430 oocysts per gram feces. This was associated with a low inflammatory response of the jejunum of mice evidenced by histology, non-response of IL-1β mRNA, even slight downregulation of IL-6 mRNA, only slight increases in iNOS mRNA, nitrate/nitrate, malondialdehyde, and a small decrease in glutathione, respectively. Only IFNγ mRNA was strongly induced. Using miRNA microarray technology, there were significantly upregulated the four miRNA species miR-1959, MCMV-miR-M23-1-5P, miR-203, and miR-21 out of 634 miRNAs, which was also confirmed by quantitative RT-PCR. Our data provide evidence that E. papillata parasites are able to induce specific miRNA species in their host target organ.
The Scientific World Journal | 2013
Mohamed A. Dkhil; Denis Delic; Saleh Al-Quraishy
Coccidiosis causes considerable economic loss in the poultry industry. The current study aimed to investigate the response of goblet cells as well as the induced tissue damage during Eimeria papillata infection. Mice were infected with sporulated E. papillata oocytes. On day 5 postinfection, the fecal output was determined. Also, the jejunum was prepared for the histological, histochemical, and molecular studies. Our results revealed that the intestinal coccidian infection with E. papillata induced a marked goblet cell hypoplasia and depleted mucus secretion. Also, the infection was able to alter the jejunal architecture and increased the apoptotic cells inside the villi. In addition, the real-time PCR results indicated that the inflammatory cytokines: TNF-α, iNOS, IFN-γ, and IL-1β, were significantly upregulated. In contrast, the mRNA expression patterns of IL-6 in response to E. papillata infection did not differ significantly between control and infected mice. Moreover, the mRNA expression of TLR4 was significantly upregulated, whereas the expression of MUC2 is significantly downregulated upon infection. Further studies are required to understand the regulatory mechanisms of goblet cells related genes.
Microbiology | 2011
Tim Kolmsee; Denis Delic; Tommy Agyenim; Christian Calles; Rolf Wagner
Transcription of rRNAs in Escherichia coli is directed from seven redundant rRNA operons, which are mainly regulated by their P1 promoters. Here we demonstrate by in vivo measurements that the amounts of individual rRNAs transcribed from the different operons under normal growth vary noticeably although the structures of all the P1 promoters are very similar. Moreover, we show that starvation for amino acids does not affect the seven P1 promoters in the same way. Notably, reduction of transcription from rrnD P1 was significantly lower compared to the other P1 promoters. The presence of DksA was shown to be crucial for the ppGpp-dependent downregulation of all P1 promoters. Because rrnD P1 is the only rrn promoter starting with GTP instead of ATP, we performed studies with a mutant rrnD promoter, where the initiating G+1 is replaced by A+1. These analyses demonstrated that the ppGpp sensitivity of rrn P1 promoters depends on the nature and concentration of initiating nucleoside triphosphates (iNTPs). Our results support the notion that the seven rRNA operons are differentially regulated and underline the importance of a concerted activity between ppGpp, DksA and an adequate concentration of the respective iNTP.
International Journal of Molecular Sciences | 2016
Denis Delic; Claudia Eisele; Ramona Schmid; Gerd Luippold; Eric Mayoux; Rolf Grempler
The aim of the present pilot study was the identification of micro-RNA changes over time during the development and progression of type 2 diabetes (T2D) in Zucker diabetic fatty rats (ZDF rats). T2D is a complex metabolic disorder that is characterized, inter alia, by progressive failure of pancreatic β cells to produce insulin, but also by functional or morphological modifications of others organ, such as liver, adipose tissue and the cardiovascular system. Micro-RNAs are a novel class of biomarkers that have the potential to represent biomarkers of disease progression. In this study, the onset and progression of diabetes was followed in ZDF rats from six weeks until 17 weeks of age. After an initial phase of hyperinsulinemia, the animals developed T2D and lost the capacity to produce sufficient insulin. Circulating miRNAs were measured from plasma samples at four time points: pre-diabetes (six weeks of age), hyperinsulinemia (eight weeks), β cell failure (11 weeks) and late-stage diabetes (17 weeks) using TaqMan miRNA arrays. Bioinformatic analysis revealed distinct changes of circulating miRNAs over time. Several miRNAs were found to be increased over the course of the disease progression, such as miR-122, miR-133, miR-210 and miR-375. The most significantly decreased miRNAs were miR-140, miR-151-3p, miR-185, miR-203, miR-434-3p and miR-450a. Some of the miRNAs have also been identified in type 2 diabetic patients recently and, therefore, may have the potential to be useful biomarkers for the disease progression of T2D and/or the treatment response for anti-diabetic medications.
The Journal of Steroid Biochemistry and Molecular Biology | 2015
Mohamed A. Dkhil; Saleh Al-Quraishy; Abdel-Azeem S. Abdel-Baki; Foued Ghanjati; Marcos J. Araúzo-Bravo; Denis Delic; Frank Wunderlich
Testosterone (T) is known to masculinize the female phenotype of the liver, evidenced as up- and down-regulated expressions of male- and female-predominant genes, respectively, involved in hepatic metabolism. This study is aimed at identifying epigenetic modifications of promoters of these differently expressed genes in the liver after masculinization by T of adult female C57BL/6 mice using methylated DNA immunoprecipitation and NimbleGen microarrays. Among the 17,354 promoters examined, 82 promoters in the liver have been identified to be significantly changed by T (p<0.05), with 47 and 35 promoters exhibiting increased and decreased DNA methylation, respectively. Most of these promoters display the changes of DNA methylation in their Ups-regions, which are between +500 and +2000 bp upstream from the transcription start site (TSS) of the genes. Less T-induced modifications have been detected in the Cor-regions of the promoters, i.e., +500 to -500 bp around the TSS. Only 13 and 7 Cor-promoters are hyper- and hypo-methylated, respectively, among which are 10 hyper- and 5 hypo-methylated promoters of genes with annotated functions. Surprisingly, the promoters are largely unmethylated in those genes whose expression has been previously found to be permanently deregulated by T in the liver, as e.g. the T-upregulated male-predominant genes Cyp7b1, Cyp2d9, Cyp4a10, Ugt2b1, Ugt2b38, Hsd3b5, Slco1a1 as well as the T-downregulated female-predominant genes Cyp2b9, Cyp2b13, Cyp3a41, Cyp3a44, Fmo3, Sult2a2, respectively. Though methylatable, the promoter DNA of Ar, Esr1, and Esr2 remained unaffected by T. However, T decreases DNA-methylation of the Cor-promoter region of Ddc encoding the AR-coactivator dopa decarboxylase. Among the identified 15 Cor-promoters of genes with annotated functions are also those of Defb43, Cst11, and Sele involved in innate immunity. Our data support the view that T may exert long-lasting epigenetic effects on functions of the liver-inherent immune system.