Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Denis K. Byarugaba is active.

Publication


Featured researches published by Denis K. Byarugaba.


Emerging Infectious Diseases | 2007

Growing Problem of Multidrug-Resistant Enteric Pathogens in Africa

Iruka N. Okeke; Oladiipo A. Aboderin; Denis K. Byarugaba; Kayode K. Ojo; Japheth A. Opintan

A disproportionate number of low-income persons are affected.


Experimental Parasitology | 2002

Immunization with a tubulin-rich preparation from Trypanosoma brucei confers broad protection against African trypanosomosis.

George W. Lubega; Denis K. Byarugaba; Roger K. Prichard

Tubulin from Trypanosoma brucei was purified to near homogeneity using a protocol which involved treatment with urea with subsequent renaturation and was then used to immunize mice. Renatured tubulin further purified by SDS-PAGE (denatured), synthetic tubulin peptides (STP), and rat brain tubulin (RbTub) were also used. Immunized mice were challenged with T. brucei, Trypanosoma congolense or Trypanosoma rhodesiense. Renatured T. brucei tubulin (nTbTub) induced protection in all mice tested, of which 60-80% (n = 81) was complete and the remainder partial. Denatured T. brucei tubulin (dTbTub), STP, or RbTub induced lower antibody levels than nTbTub and did not offer protection. However, in culture, the antibodies against dTbTub or STP killed trypanosomes although at lower dilutions than nTbTub, but those against RbTub did not. In Western blots anti-trypanosome antibodies recognized the tubulin of all the trypanosome species investigated but not vertebrate tubulin, whereas the anti-RbTUB antibodies recognized both trypanosome and vertebrate tubulin. Of the five mice given passive immunity by the transfer of anti-nTbTub serum, four were completely protected and one partially protected. These data suggest that tubulin is the relevant immunogen in the preparation used and could therefore be a promising target for the development of a parasite-specific, broad spectrum vaccine.


Mbio | 2017

Further Evidence for Bats as the Evolutionary Source of Middle East Respiratory Syndrome Coronavirus

Simon J. Anthony; Kirsten V. K. Gilardi; Vineet D. Menachery; Tracey Goldstein; Benard J. Ssebide; R. Mbabazi; Isamara Navarrete-Macias; Eliza Liang; H. Wells; Allison L. Hicks; A. Petrosov; Denis K. Byarugaba; Kari Debbink; Kenneth H. Dinnon; Trevor Scobey; Scott H. Randell; Boyd Yount; M. Cranfield; Christine K. Johnson; Ralph S. Baric; W. I. Lipkin; Jonna A. K. Mazet

ABSTRACT The evolutionary origins of Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) are unknown. Current evidence suggests that insectivorous bats are likely to be the original source, as several 2c CoVs have been described from various species in the family Vespertilionidae. Here, we describe a MERS-like CoV identified from a Pipistrellus cf. hesperidus bat sampled in Uganda (strain PREDICT/PDF-2180), further supporting the hypothesis that bats are the evolutionary source of MERS-CoV. Phylogenetic analysis showed that PREDICT/PDF-2180 is closely related to MERS-CoV across much of its genome, consistent with a common ancestry; however, the spike protein was highly divergent (46% amino acid identity), suggesting that the two viruses may have different receptor binding properties. Indeed, several amino acid substitutions were identified in key binding residues that were predicted to block PREDICT/PDF-2180 from attaching to the MERS-CoV DPP4 receptor. To experimentally test this hypothesis, an infectious MERS-CoV clone expressing the PREDICT/PDF-2180 spike protein was generated. Recombinant viruses derived from the clone were replication competent but unable to spread and establish new infections in Vero cells or primary human airway epithelial cells. Our findings suggest that PREDICT/PDF-2180 is unlikely to pose a zoonotic threat. Recombination in the S1 subunit of the spike gene was identified as the primary mechanism driving variation in the spike phenotype and was likely one of the critical steps in the evolution and emergence of MERS-CoV in humans. IMPORTANCE Global surveillance efforts for undiscovered viruses are an important component of pandemic prevention initiatives. These surveys can be useful for finding novel viruses and for gaining insights into the ecological and evolutionary factors driving viral diversity; however, finding a viral sequence is not sufficient to determine whether it can infect people (i.e., poses a zoonotic threat). Here, we investigated the specific zoonotic risk of a MERS-like coronavirus (PREDICT/PDF-2180) identified in a bat from Uganda and showed that, despite being closely related to MERS-CoV, it is unlikely to pose a threat to humans. We suggest that this approach constitutes an appropriate strategy for beginning to determine the zoonotic potential of wildlife viruses. By showing that PREDICT/PDF-2180 does not infect cells that express the functional receptor for MERS-CoV, we further show that recombination was likely to be the critical step that allowed MERS to emerge in humans. Global surveillance efforts for undiscovered viruses are an important component of pandemic prevention initiatives. These surveys can be useful for finding novel viruses and for gaining insights into the ecological and evolutionary factors driving viral diversity; however, finding a viral sequence is not sufficient to determine whether it can infect people (i.e., poses a zoonotic threat). Here, we investigated the specific zoonotic risk of a MERS-like coronavirus (PREDICT/PDF-2180) identified in a bat from Uganda and showed that, despite being closely related to MERS-CoV, it is unlikely to pose a threat to humans. We suggest that this approach constitutes an appropriate strategy for beginning to determine the zoonotic potential of wildlife viruses. By showing that PREDICT/PDF-2180 does not infect cells that express the functional receptor for MERS-CoV, we further show that recombination was likely to be the critical step that allowed MERS to emerge in humans.


Archive | 2010

Mechanisms of Antimicrobial Resistance

Denis K. Byarugaba

There is no doubt that antimicrobial agents have saved the human race from a lot of suffering due to infectious disease burden. Without antimicrobial agents, millions of people would have succumbed to infectious diseases. Man has survived the accidental wrath of microorganisms using antimicrobial agents and other mechanisms that keep them at bay. Hardly years after the discovery and use of the first antibiotics was observation made of organisms that still survived the effects of the antimicrobial agents. That was the beginning of the suspicion that different microorganisms were getting a way around previously harmful agents that is known today as antimicrobial resistance. Microbial resistance to antimicrobial agents was not a new phenomenon for it had been constantly used as competitive/survival mechanisms by microorganisms against others. These mechanisms have been well documented. This chapter therefore gives a brief overview of the mechanisms of resistance by bacteria against antimicrobial agents, and the mechanisms, levels, and patterns of resistance to the different microorganisms in developing countries are dealt with in detail elsewhere in the book. Understanding the mechanisms of resistance is important in order to define better ways to keep existing agents useful for a little longer but also to help in the design of better antimicrobial agents that are not affected by the currently known, predicted, or unknown mechanisms of resistance.


Virology Journal | 2014

High pathogenicity and low genetic evolution of avian paramyxovirus type I (Newcastle disease virus) isolated from live bird markets in Uganda

Denis K. Byarugaba; Kizito K. Mugimba; John Bosco Omony; Martin Okitwi; Agnes Wanyana; Maxwell O Otim; Halid Kirunda; Jessica Nakavuma; Angélique Teillaud; Mathilde Paul; Mariette F. Ducatez

BackgroundNewcastle disease is still a serious disease of poultry especially in backyard free-range production systems despite the availability of cross protective vaccines. Healthy-looking poultry from live bird markets have been suspected as a major source of disease spread although limited studies have been conducted to ascertain the presence of the virulent strains in the markets and to understand how they are related to outbreak strains.MethodsThis study evaluated the occurrence of Newcastle disease virus in samples collected from poultry in live bird markets across Uganda. The isolates were pathoyped using standard methods (mean death time (MDT), intracelebral pathogenicity index (ICPI), and sequencing of the fusion protein cleavage site motif) and also phylogenetically analysed after sequencing of the full fusion and hemagglutin-neuraminidase genes. The isolates were classified into genotypes and subgenotypes based on the full fusion protein gene classification system and compared with other strains in the region and world-wide.ResultsVirulent avian paramyxovirus type I (APMV-1) (Newcastle disease virus) was isolated in healthy-looking poultry in live bird markets. The viruses belonged to a new subgenotype, Vd, in genotype V, and clustered together with Tanzania and Kenya strains. They harbored low genetic diversity.ConclusionThe occurrence of virulent AMPV-1 strains in live bird markets may serve as sources of Newcastle disease outbreaks in non-commercial farms.


Archive | 2005

Antimicrobial Resistance and its Containment in Developing Countries

Denis K. Byarugaba

The problem of AR in DCs is mainly due to poverty and the factors related to it. The problem of resistance is not quite appreciated by most stakeholders as there are more priorities to address such as provision of basic healthcare or sanitation. These overshadow the problems of AR. Containment of AR in DCs therefore will heavily rely on formation of global partnership with developed countries and organisations to formulate and implement integrated mechanisms to sensitise service providers, the policy-makers, and the users to understand the problem and the consequences of lack of control. Prevention and control will require prudent use of existing agents, discovery of new antimicrobial agents, new vaccines and enhanced public health efforts to reduce transmission. AIDS is a very important player in the development and spread of AR. Without making significant headway with AIDS prevention and mitigation and eradication of poverty, the control of AR will remain a secondary issue in DCs.


PLOS ONE | 2016

Potential Sources and Transmission of Salmonella and Antimicrobial Resistance in Kampala, Uganda

Josephine Azikuru Afema; Denis K. Byarugaba; Devendra H. Shah; Esther Atukwase; Maria Nambi; William M. Sischo

In sub‒Saharan Africa, non‒typhoidal Salmonellae (NTS) cause invasive disease particularly in children and HIV infected adults, but the disease epidemiology is poorly understood. Between 2012 and 2013, we investigated NTS sources and transmission in Kampala. We detected Salmonella in 60% of the influent and 60% of the effluent samples from a wastewater treatment plant and 53.3% of the influent and 10% of the effluent samples from waste stabilization ponds that serve the human population; 40.9% of flush‒water samples from ruminant slaughterhouses, 6.6% of the poultry fecal samples from live bird markets and 4% of the fecal samples from swine at slaughter; and in 54.2% of the water samples from a channel that drains storm–water and effluents from the city. We obtained 775 Salmonella isolates, identified 32 serovars, and determined resistance to 15 antimicrobials. We genotyped common serovars using multiple‒locus variable number tandem repeats analysis or pulsed‒field gel electrophoresis. In addition, we analyzed 49 archived NTS isolates from asymptomatic livestock and human clinical cases. Salmonella from ruminant and swine sources were mostly pan‒susceptible (95%) while poultry isolates were generally more resistant. Salmonella Kentucky isolated from poultry exhibited extensive drug resistance characterized by resistance to 10 antimicrobials. Interestingly, similar genotypes of S. Kentucky but with less antimicrobial resistance (AMR) were found in poultry, human and environmental sources. The observed AMR patterns could be attributed to host or management factors associated with production. Alternatively, S. Kentucky may be prone to acquiring AMR. The factors driving AMR remain poorly understood and should be elucidated. Overall, shared genotypes and AMR phenotypes were found in NTS from human, livestock and environmental sources, suggesting zoonotic and environmental transmissions most likely occur. Information from this study could be used to control NTS transmission.


PLOS ONE | 2011

Molecular Epidemiology of Influenza A/H3N2 Viruses Circulating in Uganda

Denis K. Byarugaba; Mariette F. Ducatez; Bernard Erima; Edison A. Mworozi; Monica Millard; Hannah Kibuuka; Luswa Lukwago; Josephine Bwogi; Blanche B. Kaira; Derrick Mimbe; David C. Schnabel; Scott Krauss; Daniel Darnell; Richard J. Webby; Robert G. Webster; Fred Wabwire-Mangen

The increasing availability of complete influenza virus genomes is deepening our understanding of influenza evolutionary dynamics and facilitating the selection of vaccine strains. However, only one complete African influenza virus sequence is available in the public domain. Here we present a complete genome analysis of 59 influenza A/H3N2 viruses isolated from humans in Uganda during the 2008 and 2009 season. Isolates were recovered from hospital-based sentinel surveillance for influenza-like illnesses and their whole genome sequenced. The viruses circulating during these two seasons clearly differed from each other phylogenetically. They showed a slow evolution away from the 2009/10 recommended vaccine strain (A/Brisbane/10/07), instead clustering with the 2010/11 recommended vaccine strain (A/Perth/16/09) in the A/Victoria/208/09 clade, as observed in other global regions. All of the isolates carried the adamantane resistance marker S31N in the M2 gene and carried several markers of enhanced transmission; as expected, none carried any marker of neuraminidase inhibitor resistance. The hemagglutinin gene of the 2009 isolates differed from that of the 2008 isolates in antigenic sites A, B, D, and to a lesser extent, C and E indicating evidence of an early phylogenetic shift from the 2008 to 2009 viruses. The internal genes of the 2009 isolates were similar to those of one 2008 isolate, A/Uganda/MUWRP-050/2008. Another 2008 isolate had a truncated PB1-F2 protein. Whole genome sequencing can enhance surveillance of future seasonal changes in the viral genome which is crucial to ensure that selected vaccine strains are protective against the strains circulating in Eastern Africa. This data provides an important baseline for this surveillance. Overall the influenza virus activity in Uganda appears to mirror that observed in other regions of the southern hemisphere.


Virology Journal | 2013

Genetic analysis of Influenza B viruses isolated in Uganda during the 2009–2010 seasons.

Denis K. Byarugaba; Bernard Erima; Monica Millard; Hannah Kibuuka; Luswa Lukwago; Josephine Bwogi; Derrick Mimbe; Edison A. Mworozi; Bridget Sharp; Scott Krauss; Richard J. Webby; Robert G. Webster; Samuel K Martin; Fred Wabwire-Mangen; Mariette F. Ducatez

BackgroundInfluenza B viruses can cause morbidity and mortality in humans but due to the lack of an animal reservoir are not associated with pandemics. Because of this, there is relatively limited genetic sequences available for influenza B viruses, especially from developing countries. Complete genome analysis of one influenza B virus and several gene segments of other influenza B viruses isolated from Uganda from May 2009 through December 2010 was therefore undertaken in this study.MethodsSamples were collected from patients showing influenza like illness and screened for influenza A and B by PCR. Influenza B viruses were isolated on Madin-Darby Canine Kidney cells and selected isolates were subsequently sequenced and analyzed phylogenetically.FindingsOf the 2,089 samples collected during the period, 292 were positive by PCR for influenza A or B; 12.3% of the PCR positives were influenza B. Thirty influenza B viruses were recovered and of these 25 that grew well consistently on subculture were subjected to further analysis. All the isolates belonged to the B/Victoria-lineage as identified by hemagglutination inhibition assay and genetic analysis except one isolate that grouped with the B-Yamagata-lineage. The Ugandan B/Victoria-lineage isolates grouped in clade 1 which was defined by the N75K, N165K and S172P substitutions in hemagglutinin (HA) protein clustered together with the B/Brisbane/60/2008 vaccine strain. The Yamagata-like Ugandan strain, B/Uganda/MUWRP-053/2009, clustered with clade 3 Yamagata viruses such as B/Bangladesh/3333/2007 which is characterized by S150I and N166Y substitutions in HA.ConclusionIn general there was limited variation among the Ugandan isolates but they were interestingly closer to viruses from West and North Africa than from neighboring Kenya. Our isolates closely matched the World Health Organization recommended vaccines for the seasons.


BMC Veterinary Research | 2014

Prevalence of influenza A viruses in livestock and free-living waterfowl in Uganda

Halid Kirunda; Bernard Erima; Agnes Tumushabe; Jocelyn Kiconco; Titus Tugume; Sophia Mulei; Derrick Mimbe; Edison Mworozi; Josephine Bwogi; Lukwago Luswa; Hannah Kibuuka; Monica Millard; Achilles Byaruhanga; Mariette Ducatez; Scott Krauss; Richard J. Webby; Robert G. Webster; Kofi Wurapa; Denis K. Byarugaba; Fred Wabwire-Mangen

BackgroundAvian influenza viruses may cause severe disease in a variety of domestic animal species worldwide, with high mortality in chickens and turkeys. To reduce the information gap about prevalence of these viruses in animals in Uganda, this study was undertaken.ResultsInfluenza A virus prevalence by RT-PCR was 1.1% (45/4,052) while seroprevalence by ELISA was 0.8% (24/2,970). Virus prevalence was highest in domestic ducks (2.7%, 17/629) and turkeys (2.6%, 2/76), followed by free-living waterfowl (1.3%, 12/929) and swine (1.4%, 7/511). A lower proportion of chicken samples (0.4%, 7/1,865) tested positive. No influenza A virus was isolated. A seasonal prevalence of these viruses in waterfowl was 0.7% (4/561) for the dry and 2.2% (8/368) for the wet season. In poultry, prevalence was 0.2% (2/863) for the dry and 1.4% (24/1,713) for the wet season, while that of swine was 0.0% (0/159) and 2.0% (7/352) in the two seasons, respectively. Of the 45 RT-PCR positive samples, 13 (28.9%) of them were H5 but none was H7. The 19 swine sera positive for influenza antibodies by ELISA were positive for H1 antibodies by HAI assay, but the subtype(s) of ELISA positive poultry sera could not be determined. Antibodies in the poultry sera could have been those against subtypes not included in the HAI test panel.ConclusionsThe study has demonstrated occurrence of influenza A viruses in animals in Uganda. The results suggest that increase in volumes of migratory waterfowl in the country could be associated with increased prevalence of these viruses in free-living waterfowl and poultry.

Collaboration


Dive into the Denis K. Byarugaba's collaboration.

Top Co-Authors

Avatar

Josephine Bwogi

Uganda Virus Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard J. Webby

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Robert G. Webster

St. Jude Children's Research Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge