Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Denis Lee is active.

Publication


Featured researches published by Denis Lee.


Journal of Virology | 2003

The PDZ Ligand Domain of the Human Papillomavirus Type 16 E6 Protein Is Required for E6's Induction of Epithelial Hyperplasia In Vivo

Marie L. Nguyen; Minh M. Nguyen; Denis Lee; Anne E. Griep; Paul F. Lambert

ABSTRACT Human papillomaviruses (HPVs) are the causative agent of warts. Infections with high-risk HPVs are associated with anogenital and head and neck cancers. One of the viral genes responsible for HPVs oncogenic activity is E6. Mice expressing the HPV-16 E6 protein in their epidermis (K14E6WT) develop epithelial hyperplasia and squamous carcinomas. Numerous cellular proteins interact with E6, some of which can be grouped based on common amino acid motifs in their E6-binding domains. One such group, the PDZ partners, including hDLG, hSCRIBBLE, MUPP1, and MAGI, bind to the carboxy-terminal four amino acids of E6 through their PDZ domains. E6s interaction with the PDZ partners leads to their degradation. Additionally, E6s binding to PDZ proteins has been correlated with its ability to transform baby rat kidney cells in tissue culture and to confer tumorigenicity onto cells in xenograft experiments. To address whether the ability of E6 to bind PDZ domain partners is necessary for E6 to confer epithelial hyperproliferation in vivo, we generated transgenic mice that express in stratified squamous epithelia a mutant of E6 lacking the last six amino acids at its carboxyl terminus, E6Δ146-151, from the human keratin 14 (K14) promoter. The K14E6Δ146-151 mice exhibit a radiation response similar to that of the K14E6WT mice, demonstrating that this protein, as predicted, retains an ability to inactivate p53. However, the K14E6Δ146-151 mice fail to display epithelial hyperplasia. These results indicate that an interaction of E6 with PDZ partners is necessary for its induction of epithelial hyperplasia.


Journal of Virology | 2000

The Human Papillomavirus Type 16 E7 Oncogene Is Required for the Productive Stage of the Viral Life Cycle

Elsa R. Flores; B. Lynn Allen-Hoffmann; Denis Lee; Paul F. Lambert

ABSTRACT The production of the human papillomavirus type 16 (HPV-16) is intimately tied to the differentiation of the host epithelium that it infects. Infection occurs in the basal layer of the epithelium at a site of wounding, where the virus utilizes the host DNA replication machinery to establish itself as a low-copy-number episome. The productive stage of the HPV-16 life cycle occurs in the postmitotic suprabasal layers of the epithelium, where the virus amplifies its DNA to high copy number, synthesizes the capsid proteins (L1 and L2), encapsidates the HPV-16 genome, and releases virion particles as the upper layer of the epithelium is shed. Papillomaviruses are hypothesized to possess a mechanism to overcome the block in DNA synthesis that occurs in the differentiated epithelial cells, and the HPV-16 E7 oncoprotein has been suggested to play a role in this process. To determine whether E7 plays a role in the HPV-16 life cycle, an E7-deficient HPV-16 genome was created by inserting a translational termination linker (TTL) in the E7 gene of the full HPV-16 genome. This DNA was transfected into an immortalized human foreskin keratinocyte cell line shown previously to support the HPV-16 life cycle, and stable cell lines were obtained that harbored the E7-deficient HPV-16 genome episomally, the state of the genome found in normal infections. By culturing these cells under conditions which promote the differentiation of epithelial cells, we found E7 to be necessary for the productive stage of the HPV-16 life cycle. HPV-16 lacking E7 failed to amplify its DNA and expressed reduced amounts of the capsid protein L1, which is required for virus production. E7 appears to create a favorable environment for HPV-16 DNA synthesis by perturbing the keratinocyte differentiation program and inducing the host DNA replication machinery. These data demonstrate that E7 plays an essential role in the papillomavirus life cycle.


Journal of Virology | 2003

Methylation Patterns of Papillomavirus DNA, Its Influence on E2 Function, and Implications in Viral Infection

Kitai Kim; Peggy A. Garner-Hamrick; Chris Fisher; Denis Lee; Paul F. Lambert

ABSTRACT The biological activities of the papillomavirus E2 protein in transcription, replication, and maintenance of the papillomavirus genome rely on the E2 proteins ability to bind that genome specifically. The E2 binding sites (E2BSs), located within the long control region (LCR) of human papillomavirus (HPV) genomes, contain potential sites for 5′methylation at cytosine (CpG) residues. The E2 proteins capacity to bind E2BS in vitro is inhibited by methylation of these cytosines (59). Herein, we describe experiments to assess the influence of methylation on E2 function in cells. E2s ability to activate transcription was inhibited by the global methylation of CpG dinucleotides in E2-responsive transcriptional templates or when only the CpG dinucleotides within the E2BSs of a transcriptional template were methylated. Thus at least one biological activity of E2 that is dependent on its ability to bind DNA in a site-specific manner is influenced by the methylation status of its cognate binding site. The activity of DNA methylases is influenced by the differentiation status of mammalian cells. The life cycle of HPVs is tied to the differentiation of its host cells within stratified squamous epithelia. To investigate whether methylation of the papillomavirus genomes is influenced by the differentiation status of host epithelial cells, we analyzed HPV16 DNA harvested from a cervical epithelial cell line that was isolated from an HPV16-infected patient. We found, using bisulfite treatment to discriminate between methylated and unmethylated cytosines, that the HPV16 LCR was selectively hypomethylated in highly differentiated cell populations. In contrast, the HPV16 LCR from poorly differentiated, basal cell-like cells contained multiple methylated cytosines and were often methylated at E2BSs, particularly E2BS2. These experiments indicate that the methylation state of the viral genome, and particular that of E2BSs, may vary during the viral life cycle, providing a novel means for modulating E2 function. These studies also uncovered an extensive pattern of methylation at non-CpG dinucleotides indicative of de novo methylation. The potential implications of this de novo methylation pattern are discussed.


Journal of Virology | 2005

Human Papillomavirus Type 16 E1∧E4 Contributes to Multiple Facets of the Papillomavirus Life Cycle

Tomomi Nakahara; Woei Ling Peh; John Doorbar; Denis Lee; Paul F. Lambert

ABSTRACT The life cycle of human papillomaviruses (HPVs) is tightly linked to the differentiation program of the hosts stratified epithelia that it infects. E1∧E4 is a viral protein that has been ascribed multiple biochemical properties of potential biological relevance to the viral life cycle. To identify the role(s) of the viral E1∧E4 protein in the HPV life cycle, we characterized the properties of HPV type 16 (HPV16) genomes harboring mutations in the E4 gene in NIKS cells, a spontaneously immortalized keratinocyte cell line that when grown in organotypic raft cultures supports the HPV life cycle. We learned that E1∧E4 contributes to the replication of the viral plasmid genome as a nuclear plasmid in basal cells, in which we also found E1∧E4 protein to be expressed at low levels. In the suprabasal compartment of organotypic raft cultures harboring E1∧E4 mutant HPV16 genomes there were alterations in the frequency of suprabasal cells supporting DNA synthesis, the levels of viral DNA amplification, and the degree to which the virus perturbs differentiation. Interestingly, the comparison of the phenotypes of various mutations in E4 indicated that the E1∧E4 protein-encoding requirements for these various processes differed. These data support the hypothesis that E1∧E4 is a multifunctional protein and that the different properties of E1∧E4 contribute to different processes in both the early and late stages of the virus life cycle.


Journal of Virology | 2015

APOBEC3A Functions as a Restriction Factor of Human Papillomavirus

Cody J. Warren; Tao Xu; Kejun Guo; Laura M. Griffin; Joseph A. Westrich; Denis Lee; Paul F. Lambert; Mario L. Santiago; Dohun Pyeon

ABSTRACT Human papillomaviruses (HPVs) are small DNA viruses causally associated with benign warts and multiple cancers, including cervical and head-and-neck cancers. While the vast majority of people are exposed to HPV, most instances of infection are cleared naturally. However, the intrinsic host defense mechanisms that block the early establishment of HPV infections remain mysterious. Several antiviral cytidine deaminases of the human APOBEC3 (hA3) family have been identified as potent viral DNA mutators. While editing of HPV genomes in benign and premalignant cervical lesions has been demonstrated, it remains unclear whether hA3 proteins can directly inhibit HPV infection. Interestingly, recent studies revealed that HPV-positive cervical and head-and-neck cancers exhibited higher rates of hA3 mutation signatures than most HPV-negative cancers. Here, we report that hA3A and hA3B expression levels are highly upregulated in HPV-positive keratinocytes and cervical tissues in early stages of cancer progression, potentially through a mechanism involving the HPV E7 oncoprotein. HPV16 virions assembled in the presence of hA3A, but not in the presence of hA3B or hA3C, have significantly decreased infectivity compared to HPV virions assembled without hA3A or with a catalytically inactive mutant, hA3A/E72Q. Importantly, hA3A knockdown in human keratinocytes results in a significant increase in HPV infectivity. Collectively, our findings suggest that hA3A acts as a restriction factor against HPV infection, but the induction of this restriction mechanism by HPV may come at a cost to the host by promoting cancer mutagenesis. IMPORTANCE Human papillomaviruses (HPVs) are highly prevalent and potent human pathogens that cause >5% of all human cancers, including cervical and head-and-neck cancers. While the majority of people become infected with HPV, only 10 to 20% of infections are established as persistent infections. This suggests the existence of intrinsic host defense mechanisms that inhibit viral persistence. Using a robust method to produce infectious HPV virions, we demonstrate that hA3A, but not hA3B or hA3C, can significantly inhibit HPV infectivity. Moreover, hA3A and hA3B were coordinately induced in HPV-positive clinical specimens during cancer progression, likely through an HPV E7 oncoprotein-dependent mechanism. Interestingly, HPV-positive cervical and head-and-neck cancer specimens were recently shown to harbor significant amounts of hA3 mutation signatures. Our findings raise the intriguing possibility that the induction of this host restriction mechanism by HPV may also trigger hA3A- and hA3B-induced cancer mutagenesis.


Mbio | 2014

Human Papillomavirus E6 Triggers Upregulation of the Antiviral and Cancer Genomic DNA Deaminase APOBEC3B

Valdimara C. Vieira; Brandon Leonard; Elizabeth A. White; Gabriel J. Starrett; Nuri A. Temiz; Laurel D. Lorenz; Denis Lee; Marcelo A. Soares; Paul F. Lambert; Peter M. Howley; Reuben S. Harris

ABSTRACT Several recent studies have converged upon the innate immune DNA cytosine deaminase APOBEC3B (A3B) as a significant source of genomic uracil lesions and mutagenesis in multiple human cancers, including those of the breast, head/neck, cervix, bladder, lung, ovary, and other tissues. A3B is upregulated in these tumor types relative to normal tissues, but the mechanism is unclear. Because A3B also has antiviral activity in multiple systems and is a member of the broader innate immune response, we tested the hypothesis that human papillomavirus (HPV) infection causes A3B upregulation. We found that A3B mRNA expression and enzymatic activity were upregulated following transfection of a high-risk HPV genome and that this effect was abrogated by inactivation of E6. Transduction experiments showed that the E6 oncoprotein alone was sufficient to cause A3B upregulation, and a panel of high-risk E6 proteins triggered higher A3B levels than did a panel of low-risk or noncancer E6 proteins. Knockdown experiments in HPV-positive cell lines showed that endogenous E6 is required for A3B upregulation. Analyses of publicly available head/neck cancer data further support this relationship, as A3B levels are higher in HPV-positive cancers than in HPV-negative cancers. Taken together with the established role for high-risk E6 in functional inactivation of TP53 and published positive correlations in breast cancer between A3B upregulation and genetic inactivation of TP53, our studies suggest a model in which high-risk HPV E6, possibly through functional inactivation of TP53, causes derepression of A3B gene transcription. This would lead to a mutator phenotype that explains the observed cytosine mutation biases in HPV-positive head/neck and cervical cancers. IMPORTANCE The innate immune DNA cytosine deaminase APOBEC3B (A3B) accounts for a large proportion of somatic mutations in cervical and head/neck cancers, but nothing is known about the mechanism responsible for its upregulation in these tumor types. Almost all cervical carcinomas and large proportions of head/neck tumors are caused by human papillomavirus (HPV) infection. Here, we establish a mechanistic link between HPV infection and A3B upregulation. The E6 oncoprotein of high-risk, but not low-risk, HPV types triggers A3B upregulation, supporting a model in which TP53 inactivation causes a derepression of A3B gene transcription and elevated A3B enzyme levels. This virus-induced mutator phenotype provides a mechanistic explanation for A3B signature mutations observed in HPV-positive head/neck and cervical carcinomas and may also help to account for the preferential cancer predisposition caused by high-risk HPV isolates. The innate immune DNA cytosine deaminase APOBEC3B (A3B) accounts for a large proportion of somatic mutations in cervical and head/neck cancers, but nothing is known about the mechanism responsible for its upregulation in these tumor types. Almost all cervical carcinomas and large proportions of head/neck tumors are caused by human papillomavirus (HPV) infection. Here, we establish a mechanistic link between HPV infection and A3B upregulation. The E6 oncoprotein of high-risk, but not low-risk, HPV types triggers A3B upregulation, supporting a model in which TP53 inactivation causes a derepression of A3B gene transcription and elevated A3B enzyme levels. This virus-induced mutator phenotype provides a mechanistic explanation for A3B signature mutations observed in HPV-positive head/neck and cervical carcinomas and may also help to account for the preferential cancer predisposition caused by high-risk HPV isolates.


Clinical Cancer Research | 2013

Development and Characterization of HPV-Positive and HPV-Negative Head and Neck Squamous Cell Carcinoma Tumorgrafts

Randall J. Kimple; Paul M. Harari; Alexandra D. Torres; Robert Z. Yang; Benjamin Soriano; Menggang Yu; Eric A. Armstrong; Grace C. Blitzer; Molly A. Smith; Laurel D. Lorenz; Denis Lee; David T. Yang; Timothy M. McCulloch; Gregory K. Hartig; Paul F. Lambert

Purpose: To develop a clinically relevant model system to study head and neck squamous cell carcinoma (HNSCC), we have established and characterized a direct-from-patient tumorgraft model of human papillomavirus (HPV)–positive and HPV-negative cancers. Experimental Design: Patients with newly diagnosed or recurrent HNSCC were consented for donation of tumor specimens. Surgically obtained tissue was implanted subcutaneously into immunodeficient mice. During subsequent passages, both formalin-fixed/paraffin-embedded as well as flash-frozen tissues were harvested. Tumors were analyzed for a variety of relevant tumor markers. Tumor growth rates and response to radiation, cisplatin, or cetuximab were assessed and early passage cell strains were developed for rapid testing of drug sensitivity. Results: Tumorgrafts have been established in 22 of 26 patients to date. Significant diversity in tumorgraft tumor differentiation was observed with good agreement in degree of differentiation between patient tumor and tumorgraft (Kappa 0.72). Six tumorgrafts were HPV-positive on the basis of p16 staining. A strong inverse correlation between tumorgraft p16 and p53 or Rb was identified (Spearman correlations P = 0.085 and P = 0.002, respectively). Significant growth inhibition of representative tumorgrafts was shown with cisplatin, cetuximab, or radiation treatment delivered over a two-week period. Early passage cell strains showed high consistency in response to cancer therapy between tumorgraft and cell strain. Conclusions: We have established a robust human tumorgraft model system for investigating HPV-positive and HPV-negative HNSCC. These tumorgrafts show strong correlation with the original tumor specimens and provide a powerful resource for investigating mechanisms of therapeutic response as well as preclinical testing. Clin Cancer Res; 19(4); 855–64. ©2012 AACR.


Cancer Research | 2004

E6 and E7 Oncoproteins Induce Distinct Patterns of Chromosomal Aneuploidy in Skin Tumors from Transgenic Mice

Anthony J. Schaeffer; Marie Nguyen; Amy Liem; Denis Lee; Cristina Montagna; Paul F. Lambert; Thomas Ried; Michael J. Difilippantonio

Inactivation of the tumor suppressor genes p53 and Rb are two of the most common genetic alterations in cancer cells. We use a mouse model to dissect the consequences of compromising the function of either of these genes on the maintenance of genomic stability. Thirteen cell lines established from skin tumors of mice expressing either the E6 or E7 oncoprotein of the human papillomavirus (HPV) type 16 under control of the keratin 14 promoter were analyzed by comparative genomic hybridization, spectral karyotyping and fluorescence in situ hybridization, reverse transcription-PCR, and mutation analysis. Deducing from the wealth of molecular cytogenetic data available from human cancers, we hypothesized that the more benign tumors in mice expressing E7 would be distinct from the more aggressive lesions in E6 transgenic mice. Tumorigenesis in E6-expressing mice required specifically the selection and maintenance of cells with extra copies of chromosome 6. Aneuploidy of chromosome 6 was independent of activating mutations in H-ras on chromosome 7. Expression of either E6 or E7 resulted in centrosome aberrations, indicating that each viral oncoprotein interferes independently with the centrosome cycle. Although centrosome aberrations are consistent with development of aneuploidy, no direct correlation was evident between the degree of aneuploidy and the percentage of cells with aberrant centrosomes. Our results show that although aneuploidy and centrosome aberrations are present in tumor cells from mice expressing either E6 or E7, tumorigenesis via E6 requires copy number increases of mouse chromosome 6, which is partially orthologous to human chromosome 3q, a region gained in HPV-associated carcinomas.


Methods in molecular medicine | 2005

Using an immortalized cell line to study the HPV life cycle in organotypic "raft" cultures.

Paul F. Lambert; Michelle A. Ozbun; Asha S. Collins; Sigrid Holmgren; Denis Lee; Tomomi Nakahara

The papillomavirus life cycle is tied to the differentiation of the stratified squamous epithelium that this virus infects. The ability to study the papillomavirus life cycle is facilitated by organotypic culturing techniques that allow one to closely recapitulate this terminal differentiation process in the laboratory. Current techniques allow for the establishment of recombinant wild-type or mutant human papillomavirus (HPV) genomes in transfected early-passage human foreskin keratinocytes (HFKs). These cells can then be used in organotypic culture to investigate the role of individual viral genes in different aspects of the viral life cycle. When using early-passage HFKs, there is a need for the transfected HPV genome to extend the life span of the cells in order to have sufficient cell generations in which to carry out organotypic culturing. The recent isolation of a spontaneously immortalized HFK cell line that supports the complete HPV life cycle has further allowed investigators to study wild-type or mutant papillomaviral genomes that do not confer immortalization. In this chapter, we describe the methodologies that permit the study of the HPV life cycle in this HFK cell line.


Radiotherapy and Oncology | 2014

Human papillomavirus type 16 E7 oncoprotein causes a delay in repair of DNA damage

Jung Wook Park; Kwangok P. Nickel; Alexandra D. Torres; Denis Lee; Paul F. Lambert; Randall J. Kimple

BACKGROUND AND PURPOSE Patients with human papillomavirus related (HPV+) head and neck cancers (HNCs) demonstrate improved clinical outcomes compared to traditional HPV negative (HPV-) HNC patients. We have recently shown that HPV+ HNC cells are more sensitive to radiation than HPV- HNC cells. However, roles of HPV oncogenes in regulating the response of DNA damage repair remain unknown. MATERIAL AND METHODS Using immortalized normal oral epithelial cell lines, HPV+ HNC derived cell lines, and HPV16 E7-transgenic mice we assessed the repair of DNA damage using γ-H2AX foci, single and split dose clonogenic survival assays, and immunoblot. The ability of E7 to modulate expression of proteins associated with DNA repair pathways was assessed by immunoblot. RESULTS HPV16 E7 increased retention of γ-H2AX nuclear foci and significantly decreased sublethal DNA damage repair. While phospho-ATM, phospho-ATR, Ku70, and Ku80 expressions were not altered by E7, Rad51 was induced by E7. Correspondingly, HPV+ HNC cell lines showed retention of Rad51 after γ-radiation. CONCLUSIONS Our findings provide further understanding as to how HPV16 E7 manipulates cellular DNA damage responses that may underlie its oncogenic potential and influence the altered sensitivity to radiation seen in HPV+ HNC as compared to HPV- HNC.

Collaboration


Dive into the Denis Lee's collaboration.

Top Co-Authors

Avatar

Paul F. Lambert

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Dhananjay M. Nawandar

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Shannon C. Kenney

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Kathleen R. Makielski

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Eric Johannsen

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Laurel D. Lorenz

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Randall J. Kimple

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Alexandra D. Torres

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Amy Liem

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Anne E. Griep

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge